首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invertase covalent grafting onto corn stover   总被引:1,自引:0,他引:1  
The covalent coupling of an invertase from baker's yeast onto an agricultural by-product, corn grits, has been developed. The optimal conditions for each step of the chemical modification of the support have been determined: oxidation with sodium metaperiodate, amination with ethylenediamine, reduction with sodium cyanoborohydride, and activation with glutaraldehyde. Activities up to 7.2 x 10(4) mumol reducing sugars produced/min g support could thus be achieved. Invertase coupling onto corn grits yields a derivative with a 25 times higher activity than when coupling this enzyme onto porous silica. The operational stability of invertase immobilized onto corn stover was found to be very high, with a half-life of up to 365 days at 40 degrees C when using a 2M sucrose solution as substrate. This immobilization method could be easily scaled up to the preparation of 10 kg of invertase derivative.  相似文献   

2.
Invertase was ionically bound to the poly(ethylene-vinyl alcohol) membrane surface modified with two aminoacetals with different molecular length, 2-dimethyl-aminoacetoaldehyde dimethylacetal (AAA) and 3-(N, N-dimethylamino-n-propanediamine) propionaldehyde dimethylacetal (APA). Immobilization conditions were determined with respect to enzyme concentration in solution, pH value, ionic strength in immobilization solution, and immobilization time. Various properties of immobilized invertase were evaluated, and thermal stability was found especially to be improved by immobilization. The apparent Michaelis constant, K(m), was smaller for invertase bound by APA with longer molecular lengths than for invertase bound by AAA. We attempted to bind glucoamylase of Rhizopus delemar origin in the same way. The amount and activity of immobilized glucoamylase were much less than of invertase.  相似文献   

3.
Invertase from Candida utilis was immobilized on porous cellulose beads by an ionic-quanidino bond. The immobilized invertase showed optimum activity between pH 4.0 and 5.4, while the free enzyme had a sharp optimum at pH 4.1. Both temperature profiles were fairly similar up to 55 degrees C. However, above this temperature the immobilized enzyme was more stable than the free enzyme. From the temperature data, the activation energies were found to be 7,322 and 4,052 cal/g mol for the free and the immobilized enzyme, respectively. Candida invertase shows characteristics of substrate inhibition. Both the Km and Ki for the free and the immobilized enzymes were determined. The apparent Ki for the immobilized invertase was much higher than the Ki of the free enzyme, suggesting a diffusion effect. Immobilized invertase molecules deep in the pores only see sucrose concentrations much less than the bulk concentrations. Immobilization, thus, offers certain processing advantages in this regard.  相似文献   

4.
A novel immobilization matrix, poly(3-methylthienyl methacrylate)–poly(3-thiopheneacetic acid) (PMTM–PTAA), was synthesized and used for the covalent immobilization of Saccharomyces cerevisiae invertase to produce invert sugar. The immobilization resulted in 87% immobilization efficiency. Optimum conditions for activity were not affected by immobilization and the optimum pH and temperature for both free and immobilized enzyme were found to be 4.5 and 55 °C, respectively. However, immobilized invertase was more stable at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined using the Lineweaver–Burk plot. The Km values were 35 and 38 mM for free and immobilized enzyme, respectively. The Vmax values were 29 and 24 mg glucose/mg enzyme min for free and immobilized enzyme, respectively. Immobilized enzyme could be used for the production of glucose and fructose from sucrose since it retained almost all the initial activity for a month in storage and retained the whole activity in repeated 50 batch reactions.  相似文献   

5.
Techniques for the immobilization of bovine carbonic anhydrase (BCA) on porous silica beads and graphite are presented. Surface coverage on porous silica beads was found to be 1.5 x 10(-5) mmol BCA/m(2), and on graphite it was 1.7 x 10(-3) mmol BCA/m(2) nominal surface area. Greater than 97% (silica support) and 85% (graphite support) enzyme activity was maintained upon storage of the immobilized enzyme for 50 days in pH 8 buffer at 4 degrees C. After 500 days storage, the porous silica bead immobilized enzyme exhibited over 70% activity. Operational stability of the enzyme on silica at 23 degrees C and pH 8 was found to be 50% after 30 days. Catalytic activity expressed as an apparent second-order rate constant K'(Enz) for the hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by BCA immobilized on silica beads and graphite at pH 8 and 25 degrees C is 2.6 x 10(2) and 5.6 x 10(2) M(-1)s(-1) respectively. The corresponding K(ENZ) value for the free enzyme is 9.1 x 10(2) M(-1)s(-1). Activity of the immobilized enzyme was found to vary with pH in such a manner that the active site pK, on the porous silica bead support is 6.75, and on graphite it is 7.41. Possible reasons for a microenvironmental influence on carbonic anhydrase pK(a), are discussed. Comparison with literature data shows that the enzyme surface coverage on silica beads reported here is superior to previously reported data on silica beads and polyacrylamide gels and is comparable to an organic matrix support. Shifts in BCA-active site pK(a) values with support material, a lack of pH dependent activity studies in the literature, and differing criteria for reporting enzyme activity complicate literature comparisons of activity; however, immobilized BCA reported here generally exhibits comparable or greater activity than previous reports for immobilized BCA.  相似文献   

6.
Invertase was immobilized by radiocopolymerization of some synthetic monomers which were mixed in various combinations. Irradiation was conducted aerobically while the mixture of monomers and enzyme was frozen. Retained activity was 51~76%. Immobilized invertase shifted its optimum pH by about 0.7 to the acidic site.

The optimum reaction temperature of enzyme became a little higher (Ca 5°C) by immobilization. Heat stability was improved by immobilization. Release of fixed enzyme was found to be considerably low (1.2~4.1%) and release of several immobilized proteins decreased as the molecular weight increased.  相似文献   

7.
As a means of integrating cell growth and immobilization, recombinant Saccharomyces cerevisiae cells with invertase activity were immobilized in liquid-core alginate capsules and cultured to a high density. S. cerevisiae cells of SEY 2102 (MAT alpha ura3-52 leu2-3, 112 his4-519) harboring plasmid pRB58 with the SUC2 gene coding for invertase were grown to 83 g/L of liquid-core volume inside the capsule on a dry weight basis. The cloned invertase was expressed well in the immobilized cells with slightly higher activity than the free cells in a batch culture. Invertase in the immobilized cells showed slightly more improved thermal stability than in the free cells. Storage in a Na-acetate buffer at 4 degrees C and 10 degrees C for 1 month resulted in 7% and 8% loss in activity, respectively. The sucrose hydrolysis reaction was stably maintained for 25 repeated batches for 7 days at 30 degrees C. Continuous hydrolysis of 0.3 M sucrose was carried out in a packed bed reactor with a conversion of more than 90% at a maximum productivity of 55.5 g glucose/L per hour for 7 days. In a continuous stirred tank reactor, the maximum productivity of 80.8 g glucose/L per hour was achieved at a conversion of 59.1% using 1.0 M sucrose solution, and 0.5 M sucrose solution was hydrolyzed for 1 week with a 95% conversion at a productivity of 48.8 g/L per hour. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
The epoxy group containing poly(glycidyl methacrylate-co-methylmethacrylate) poly(GMA–MMA) beads were prepared by suspension polymerisation and the beads surface were grafted with polyethylenimine (PEI). The PEI-grafted beads were then used for invertase immobilization via adsorption. The immobilization of enzyme onto the poly(GMA–MMA)–PEI beads from aqueous solutions containing different amounts of invertase at different pH was investigated in a batch system. The maximum invertase immobilization capacity of the poly(GMA–MMA)–PEI beads was about 52 mg/g. It was shown that the relative activity of immobilized invertase was higher then that of the free enzyme over broader pH and temperature ranges. The Michaelis constant (Km) and the maximum rate of reaction (Vmax) were calculated from the Lineweaver–Burk plot. The Km and Vmax values of the immobilized invertase were larger than those of the free enzyme. The immobilized enzyme had a long-storage stability (only 6% activity decrease in 2 months) when the immobilized enzyme preparation was dried and stored at 4 °C while under wet condition 43% activity decrease was observed in the same period. After inactivation of enzyme, the poly(GMA–MMA)–PEI beads can be easily regenerated and reloaded with the enzyme for repeated use.  相似文献   

9.
This work presents as a main objective to study the immobilization process of yeast invertase by adsorption in the ion exchanging resin Duolite A-568 for invert sugar production. Initially, a kinetic study of the soluble form of the enzyme was carried out. At the sequence was studied the immobilization process of yeast invertase in the weakly exchanging anionic resin Duolite A-568. The influences of the pH, enzyme concentration and temperature in the enzyme immobilization were analyzed through a central composite design (CCD). The results indicated that the retention of the catalytic activity in immobilization was strongly dependent of these variables, being maximum in a pH value of 5.0, with an enzyme concentration of 12.5 g/L (1.875 g of protein per liter) and temperature of 30 °C. The simultaneous influence of pH and temperature on the free and immobilized invertase activity was also studied through a CCD.  相似文献   

10.
Invertase was ionically immobilized on the poly(ethylene-co-vinyl alcohol) hollow fiber inside surface, which was aminoacetalized with 2-dimethylaminoacetaldehyde dimethyl acetal. Immobilization and enzyme reaction were carried out by letting the respective solutions pass or circulate through the inside of the hollow fiber, and the activity of invertase was determined by the amount of glucose produced enzymatically from sucrose. Immobilization conditions were examined with respect to the enzyme concentration and to the time, and consequently the preferable conditions at room temperature were found to be 5 mug/mL of enzyme concentration and 4 h of immobilization time. Under those conditions the immobilization yield and the ratio of the activity of the immobilized invertase to that of the native one were 89 and 80%, respectively. For both repeating and continuous usages, the activity fell to ca. 60% of the initial activity in the early stage and after that almost kept that value. The apparent Michaelis constant K(m) (') for the immobilized invertase decreased with increasing the flow rate of the substrate solution, to be close to the value for the native one. Furthermore, the possibility of the separation of the enzymatically formed glucose from the reaction mixture through the hollow fiber membrane was preliminarily examined.  相似文献   

11.
Use of chemically modified PMMA microspheres for enzyme immobilization   总被引:4,自引:0,他引:4  
Li S  Hu J  Liu B 《Bio Systems》2004,77(1-3):25-32
Modified poly(methyl methacrylate) (PMMA) microspheres, about 7microm in diameter, carrying aldehyde groups on their surfaces were synthesized and used as the support for enzyme immobilization. The immobilizing behavior as well as the properties of immobilized enzyme was studied. The amount of bound enzyme can be extended to 76.8mg g(-1) support, which is relatively much higher than other supports. The kinetic investigation derived from three typical models shows that the practical process is more complicated than the ideal condition, with one or more interactions being involved in the immobilization process. The K(m) value is actually larger and V(max) is smaller in the immobilized form than those in the free form. The increased resistance of the immobilized enzyme against the changes of temperature indicates that immobilizing enzyme onto the modified microspheres is useful for enzyme immobilization.  相似文献   

12.
The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.  相似文献   

13.
Sugar-cane invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) immobilized on bentonite clay in 0.05 m acetate buffer, pH 4.5, has been shown to be capable of hydrolysing sucrose. The bentonite-invertase (BI) complex gave 55.5% retention of enzyme activity on the surface. A further 17 and 22% increase in retention of enzyme activity was obtained using the covalent linking agents, cyanuric chloride and thionyl chloride, giving bentonite-cyanuric chloride-invertase (BCCI) and bentonite-thionyl chloride-invertase (BTCI) complexes. Concentrations of acetate buffer >0.2 M disrupt the bentonite-invertase complexes. The immobilized invertase complexes showed high temperature optima (60–65°C) and high thermal stability compared to the free enzyme. The pH profiles of the free and immobilized enzyme were the same. The rate of hydrolysis of sucrose was increased using immobilized enzymes, which required a higher substrate concentration than the free enzyme. The insoluble enzyme conjugate-carrier complexes when used for sucrose hydrolysis in a batch process showed 53.1 (BI), 57.4 (BCCI) and 59.6% (BTCI) conversions, respectively, in 12 h, compared to 42.3% conversion in 24 h with the free enzyme. The immobilized invertase complexes can be used for sucrose inversion for about five cycles. The application of this immobilization procedure may help in the removal of invertase from cane juice to reduce sugar losses in industry.  相似文献   

14.
The enzyme encapsulation is a very well‐known stabilization pathway. However, there are some challenges in order to avoid the enzyme denaturation under encapsulation conditions. The β‐galactosidase from Bacillus circulans was immobilized through sol‐gel encapsulation route assisted by Triton X‐100 surfactant and sugars. The effects of sugar presence in the immobilization process and the gelation time on the biocatalyst activity/stability were explained taking into account the characteristics of the formed silica matrix and the changes of the enzyme environment. The enzyme was effectively immobilized by this strategy, with high immobilization yield in terms of activity (29%) and expressed activity (47 IU/g). The immobilization through silica sol‐gel in the presence of 1×10?3 M Triton X‐100 and fructose conferred 28.4‐fold higher stability to the enzyme compared with the soluble form. This is an advantage for its use in the synthesis of the galacto‐oligosaccharides at 50ºC. The total lactose conversion to galacto‐oligosaccharides was 26%wt, which is comparable with that reported in the literature. The obtained biocatalyst is useful for the synthesis of galacto‐oligosaccharides and its catalytic behavior is rationalized in this work.  相似文献   

15.
The suitability of hornblende as a support for immobilized β-fructofuranosidase (invertase) was studied, with regard to the physical stability of the support and the thermal and operational stability of the immobilized enzyme. Hornblende was more stable than Enzacryl-Alo or Enzacryl-TIO, and marginally more stable than porous glass. Invertase immobilized on hornblende was more stable during long-term operation than invertase immobilized on porous glass. An active preparation of immobilized invertase was obtained also on pyroxene particles.  相似文献   

16.
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications.  相似文献   

17.
18.
Cotton fibers were first grafted by polyacrylonitril in the presence of KMnO(4) and oxalic acid as a combined redox initiator. Moreover, modification of the grafted cotton fibers was done by changing the nitrile group (-CN) into hydrazidine group through the reaction with hydrazine hydrate, then the fibers were activated by glutaraldehyde to introduce free aldehyde groups which were able to react with amino groups of urease to form Schiff's base, and result in cotton fibers immobilized urease. The efficiency of the immobilization was evaluated by examining the relative enzymatic activity of enzyme before and after the immobilization of urease. The results showed that the optimum temperature of immobilized urease was 35°C, which was higher than that of the free enzyme (30°C), and the immobilized urease exhibited a higher relative activity than that of free urease over 35°C. The optimal pH for immobilized urease was 6.5, which was lower than that of the free urease (pH 7.0), and the immobilization resulted in stabilization of enzyme over a wider pH range. The kinetic constant value (K(m)) of immobilized urease was higher than that of the free urease. However, the thermal and operational stabilities of immobilized urease have been improved greatly.  相似文献   

19.
Invertase activity associated with the walls of Solanum tuberosum tubers   总被引:4,自引:0,他引:4  
Three fractions with invertase activity (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) were isolated from mature Solanum tuberosum tubers: acid soluble invertase, invertase I and invertase II. The first two invertases were purified until electrophoretic homogeneity. They are made by two subunits with an apparent M(r) value of 35,000 and their optimal pH is 4.5. Invertase I was eluted from cell walls with ionic strength while invertase II remained tightly bound to cell walls after this treatment. This invertase was solubilized by enzymatic cell wall degradation (solubilized invertase II). Their K(m)s are 28, 20, 133 and 128 mM for acid soluble invertase, invertase I, invertase II and solubilized invertase II, respectively. Glucose is a non-competitive inhibitor of invertase activities and fructose produces a two site competitive inhibition with interaction between the sites. Bovine serum albumin produces activation of the acid soluble invertase and invertase I while a similar inhibition by lectins and endogenous proteinaceous inhibitor from mature S. tuberosum tubers was found. Invertase II (tightly bound to the cell walls) shows a different inhibition pattern. The test for reassociation of the acid soluble invertase or invertase I on cell wall, free of invertase activity, caused the reappearance of all invertase forms with their respective solubilization characteristics and molecular and kinetic properties. The invertase elution pattern, the recovery of cell wall firmly bound invertase and the coincidence in the immunological recognition, suggest that all three invertases may be originated from the same enzyme. The difference in some properties of invertase II and solubilized invertase II from the other two enzymes would be a consequence of the enzyme microenvironment in the cell wall or the result of its wall binding.  相似文献   

20.
Glucoamylase, invertase, and cellulase were entrapped within poly(vinyl alcohol) (PVA) membrane cross-linked by means of irradiation of ultraviolet light. The conditions for immobilization of glucoamylase were examined with respect to enzyme concentration in PVA, sensitizer (sodium benzoate) concentration in PVA, irradiation time, and membrane thickness. Various characteristics of immobilized glucoamylase were evaluated. Among them, the pH activity curve for the immobilized enzyme was superior to that for the native one, and thermal stability was improved by immobilization with bovine albumin. The apparent K(m) was larger for immobilized glucoamylase than for the native one, while V(max) was smaller for the immobilized enzyme. Also, the apparent K(m) appeared to be affected by the molecular size of the substrate. Further, immobilized invertase and cellulase showed good stabilities in repeating usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号