首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Chemokine-induced lymphocyte migration has long been hypothesized to regulate the appearance and continued presence of lymphocytes and monocytes in tissue-specific autoimmune diseases, including central nervous system autoimmune diseases such as multiple sclerosis. For instance, a large body of evidence points to the temporal association of chemokine expression with the appearance of T lymphocytes and monocytes/macrophages. Furthermore, experiments using mice with targeted mutations for chemokines have shown the importance of those molecules in the development of central nervous system autoimmune disease. We have hypothesized that temporal and spatial expression of chemokines is a key factor in the pathogenesis of experimental autoimmune encephalomyelitis and multiple sclerosis. To test our hypothesis we have employed the strategy of eliminating chemokine function by the passive transfer of chemokine-specific polyclonal antibodies. This approach has allowed us not only to test the function of chemokines in experimental autoimmune encephalomyelitis development, but also to ask questions about the roles of chemokines during disease progression. Moreover, this approach has allowed us to assess the efficacy of targeting chemokines and their receptors for treatment of ongoing disease. In the present report we summarize our experience using anti-chemokine administration for the prevention and treatment of experimental autoimmune encephalomyelitis as well as provide specific examples of how this approach is efficacious for disease treatment.  相似文献   

2.
Multiple sclerosis is a complex disease characterised by chronic inflammation, demyelination and axonal pathology resulting in progressive neurological disabilities. Multiple sclerosis is generally considered to be an autoimmune disease, even though the primary cause of the underlying autoimmune response is unknown. Epidemiological evidence suggests that both genetic and environmental factors play a key role in susceptibility to multiple sclerosis; however, the relative contributions of these factors in triggering the onset of the disease remain unclear. Several studies indicate that receptors belonging to the Interleukin-1 and Toll-like receptor families are crucially involved in the mechanisms underlying the development of experimental autoimmune encephalomyelitis, an animal model that mimics multiple sclerosis. Moreover, recent evidence highlights the importance of downstream signalling proteins in the Interleukin-1 and Toll-like receptor signalling pathways, namely, myeloid differentiation primary response protein 88 and Interleukin-1-receptor-associated kinase. This review summarises the current knowledge concerning the involvement of Interleukin-1/Toll-like receptor signalling in the development of experimental autoimmune encephalomyelitis and multiple sclerosis. A deeper understanding of the role of these important pathways in the pathogenesis of experimental autoimmune encephalomyelitis may eventually yield clinical benefits in the treatment of central nervous system-based inflammatory disorders.  相似文献   

3.
Okuno T  Nakatsuji Y  Kumanogoh A 《FEBS letters》2011,585(23):3829-3835
The nervous and immune systems have similar functional characteristics. Both have an intricate network of synaptic connections and an exquisite communication system that enable intercellular signal transduction. Although semaphorins were originally identified as guidance cues in neural development, accumulating evidence indicates that several semaphorins called 'immune semaphorins', such as Sema3A, 4A, 4D, 6D and 7A, are critically involved in various phases of the immune response by regulating immune cell-cell contacts or cell migration. In this review, we present recent knowledge on the functions of semaphorins and their receptors in the immune system and their potential roles in the pathogenesis of multiple sclerosis (MS), a representative CNS autoimmune disease, and its animal model, experimental autoimmune encephalomyelitis (EAE).  相似文献   

4.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). It has been suggested that viral and bacterial infections contribute to the pathogenesis of MS. This review will give an overview about the influence of viral and bacterial infections on MS and experimental autoimmune encephalomyelitis (EAE). It will focus on bacterial infections and will also emphasise therapeutic consequences such as the impact of antibiotic treatment on the course of EAE. In summary, a growing body of evidence suggests that systemic infections are a risk factor for the initiation of autoimmune processes including the induction of acute events in MS. Experimental and clinical data strongly suggest early treatment of bacterial infections in MS patients to avoid aggravation and relapse.  相似文献   

5.
IL-12p40 and macrophages are essential for the induction of disease in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. In this paper, we show that treatment of mice with opsonized erythrocytes, which have been shown to ligate Fcgamma receptors on macrophages and alter their cytokine profile, significantly delayed the onset of experimental autoimmune encephalomyelitis. This protection correlated to the induction of Th2 responses by autoreactive T cells, enhanced basal systemic responses and a significant downregulation of IL-12p40 and nitric oxide synthase-2, but not IFN-gamma expression. IL-4 was essential for the protection by opsonized erythrocytes as the effects of treatment were eliminated in IL-4-deficient mice. Together these studies suggest that the ligation of Fcgamma receptors can modify the development of autoimmune disease by altering macrophage activation and enhancing Th2 responses.  相似文献   

6.
多发性硬化症(multiple sclerosis,MS)是一种原发于中枢神经系统的炎症性脱髓鞘疾病。实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)与MS有相似的临床症状和病理特征,是被广泛应用于人类疾病研究的动物模型。MS确切的发病机制尚不清楚,但普遍认为是在易感基因的基础上,受环境因素触发,由CD4+T细胞介导的中枢神经系统(centralnervous system,CNS)自身免疫性疾病。初始CD4+T细胞在T细胞受体介导下活化,继而可分化为至少4个主要亚型,分别为TH1、TH2、TH17和iTreg细胞,参与不同类型的免疫应答。细胞因子和转录因子网络对CD4+T细胞分化和效应细胞因子产物有重要意义。该文综述了各相关细胞因子和转录因子在CD4+T细胞向不同亚型分化及MS/EAE发病过程中的相互作用和调控,揭示各因子在这些过程中的作用,有助于进一步研究和治疗MS。  相似文献   

7.
Ehling P  Bittner S  Budde T  Wiendl H  Meuth SG 《FEBS letters》2011,585(23):3836-3842
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by widespread inflammation, focal demyelination and a variable degree of axonal and neuronal loss. Ionic conductances regulate T cell activation as well as neuronal function and thus have been found to play a crucial role in MS pathogenesis. Since present therapeutical approaches are only partially effective so far, ion channel modulation as a future strategy was brought into focus. Here, we review the status quo concerning recent findings from ion channel research in MS and its animal model, experimental autoimmune encephalomyelitis.  相似文献   

8.
9.
Autoimmune encephalomyelitis ameliorated by AMPA antagonists   总被引:28,自引:0,他引:28  
Multiple sclerosis is an immune-mediated disorder of the central nervous system leading to progressive decline of motor and sensory functions and permanent disability. The therapy of multiple sclerosis is only partially effective, despite anti-inflammatory, immunosuppresive and immunomodulatory measures. White matter inflammation and loss of myelin, the pathological hallmarks of multiple sclerosis, are thought to determine disease severity. Experimental autoimmune encephalomyelitis reproduces the features of multiple sclerosis in rodents and in nonhuman primates. The dominant early clinical symptom of acute autoimmune encephalomyelitis is progressive ascending muscle weakness. However, demyelination may not be profound and its extent may not correlate with severity of neurological decline, indicating that targets unrelated to myelin or oligodendrocytes may contribute to the pathogenesis of acute autoimmune encephalomyelitis. Here we report that within the spinal cord in the course of autoimmune encephalomyelitis not only myelin but also neurons are subject to lymphocyte attack and may degenerate. Blockade of glutamate AMPA receptors ameliorated the neurological sequelae of autoimmune encephalomyelitis, indicating the potential for AMPA antagonists in the therapy of multiple sclerosis.  相似文献   

10.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS); its cause is unknown. To understand the pathogenesis of MS, researchers often use the experimental autoimmune encephalomyelitis (EAE) mouse model. Here, the aim is to build a proteome map of the biological changes that occur during MS at the major onset sites—the brain and the spinal cord. Quantitative proteome profiling is performed in five specific brain regions and the spinal cord of EAE and healthy mice with high‐resolution mass spectrometry based on tandem mass tags. On average, 7400 proteins per region are quantified, with the most differentially expressed proteins in the spinal cord (1691), hippocampus (104), frontal cortex (83), cerebellum (63), brainstem (50), and caudate nucleus (41). Moreover, region‐specific and commonly expressed proteins in each region are identified and bioinformatics analysis is performed. Pathway analysis reveals that protein clusters resemble their functions in disease pathogenesis (i.e., by inducing inflammatory responses, immune activation, and cell–cell adhesion). In conclusion, the study provides an understanding of the pathogenesis of MS in the EAE animal model. It is expected that the comprehensive proteome map of the brain and spinal cord can be used to identify biomarkers for the pathogenesis of MS.  相似文献   

11.
Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS.  相似文献   

12.
The pace of research on the pathogenesis and treatment of multiple sclerosis, the principal human demyelinating disease of the central nervous system, has intensified in the past 3 years, due in part, to the application of advances in molecular and cellular immunology. Many lessons that have been learned in an animal model of central nervous system demyelinating disease, experimental allergic encephalomyelitis, also apply to multiple sclerosis and certain successful approaches for the treatment of this disease are now being attempted in humans.  相似文献   

13.
Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent evidence indicates that neoplastic cells with macrophage characteristics are found in numerous metastatic cancers of non-CNS (central nervous system) origin. Evidence is presented here suggesting that subpopulations of cells within human gliomas, specifically GBM (glioblastoma multiforme), are neoplastic macrophages/microglia. These cells are thought to arise following mitochondrial damage in fusion hybrids between neoplastic stem cells and macrophages/microglia.  相似文献   

14.
Peripheral macrophages infiltrating the central nervous system and resident microglia phagocytize myelin in cell-mediated demyelinating diseases, including experimental autoimmune encephalomyelitis and multiple sclerosis. A cascade of cytokines is believed to modulate the immunological sequence of events occurring in these conditions, and several of these mediate their effects through the protein kinase C pathway. Therefore, we compared the effects of phorbol myristate acetate (PMA), an activator of protein kinase C, on various functions of cultured macrophages and microglia. PMA at moderate concentrations induced apoptosis in macrophages, and this process appeared to be increased in the presence of myelin. In contrast, microglia were activated by PMA, and greatly increased their phagocytosis of myelin. Control macrophages released a considerable amount of proteolytic activity into the medium, as measured by the breakdown of myelin basic protein, and in the process of undergoing apoptosis from PMA-treatment, even higher amounts were released. The enzyme activity in control macrophage medium was inhibited mainly by PMSF and calpain inhibitors, while that from PMA-treated macrophages was inhibited by calpain inhibitors only. An ICE inhibitor was ineffective in inhibiting activity in medium from PMA-treated cells undergoing apoptosis. Medium from microglia contained very little proteolytic activity, and this was not increased by PMA. Cultured macrophages showed little evidence of oxygen free radical release as measured by the TBARS procedure, and PMA had no effect. Microglia, on the other hand, produced higher levels of reactive oxygen species, with a further increase of 18% by PMA. Thus major functions of these phagocytic cells appear to be modulated by the protein kinase C pathway, although the two cell types show very different responses to an activator of this signal.Medical Student at the  相似文献   

15.
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a critical role in the regulation of macrophage effector functions and T cell activation. However, its role in the pathogenesis of T cell-mediated autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), has remained unresolved. In this study, we report that anti-MIF Ab treatment of SJL mice with acute EAE improved the disease severity and accelerated the recovery. Furthermore, the anti-MIF treatment impaired the homing of neuroantigen-reactive pathogenic T cells to the CNS in a VCAM-1-dependent fashion. Interestingly, MIF blockade also decreased the clonal size of the neuroantigen-specific Th1 cells and increased their activation threshold. Taken together, the results demonstrate an important role for MIF in the pathogenesis of EAE/multiple sclerosis and suggest that MIF blockade may be a promising new strategy for the treatment of multiple sclerosis.  相似文献   

16.
The complement system is known to contribute to demyelination in multiple sclerosis and experimental autoimmune encephalomyelitis. However, there are few data concerning the natural adjuvant effect of C3d on the humoral response when it binds to myelin Ags. This study addresses the effect of C3d binding to the myelin oligodendrocyte glycoprotein (MOG) in the induction of experimental autoimmune encephalomyelitis in C57BL/6J mice. Immunization with human MOG coupled to C3d was found to accelerate the appearance of clinical signs of the disease and to enhance its severity compared with MOG-immunized mice. This finding was correlated with an increased infiltration of leukocytes into the central nervous system accompanied by increased complement activation and associated with areas of demyelination and axonal loss. Furthermore, B cell participation in the pathogenesis of the disease was determined by their increased capacity to act as APCs and to form germinal centers. Consistent with this, the production of MOG-specific Abs was found to be enhanced following MOG/C3d immunization. These results suggest that binding of C3d to self-Ags could increase the severity of an autoimmune disease by enhancing the adaptive autoimmune response.  相似文献   

17.
Apoptosis in multiple sclerosis   总被引:7,自引:0,他引:7  
Several recent studies have provided evidence that apoptosis is an important feature in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. Apoptosis presumably plays a role in the immunoregulation via activation-induced T-cell death (AICD) and in local processes of tissue damage. In this review the dual role of apoptosis in the MS pathogenesis and its relevance regarding therapeutic concepts is discussed.  相似文献   

18.
Multiple sclerosis (MS) is a chronic demyelinating disease of the human central nervous system (CNS). The condition predominantly affects young adults and is characterised by immunological and inflammatory changes in the periphery and CNS that contribute to neurovascular disruption, haemopoietic cell invasion of target tissues, and demyelination of nerve fibres which culminate in neurological deficits that relapse and remit or are progressive. The main features of MS can be reproduced in the inducible animal counterpart, experimental autoimmune encephalomyelitis (EAE). The search for new MS treatments invariably employs EAE to determine drug activity and provide a rationale for exploring clinical efficacy. The preclinical development of compounds for MS has generally followed a conventional, immunotherapeutic route. However, over the past decade, a group of compounds that suppress EAE but have no apparent immunomodulatory activity have emerged. These drugs interact with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-isoxazolepropionic acid (AMPA)/kainate family of glutamate receptors reported to control neurovascular permeability, inflammatory mediator synthesis, and resident glial cell functions including CNS myelination. The review considers the importance of the glutamate receptors in EAE and MS pathogenesis. The use of receptor antagonists to control EAE is also discussed together with the possibility of therapeutic application in demyelinating disease.  相似文献   

19.
Experimental autoimmune encephalomyelitis is a T cell-mediated demyelinating disease of the CNS that serves as a model for the human disease multiple sclerosis. Increased expression of the chemokine CCL2 in the CNS has been demonstrated to be important in the development of demyelinating disease presumably by attracting inflammatory cells. However, the mechanism of how CCL2 regulates disease pathogenesis has not been fully elucidated. Using radiation bone marrow chimeric mice we demonstrated that optimum disease was achieved when CCL2 was glia derived. Furthermore, CNS production of CCL2 resulted in the accumulation of iNOS-producing CD11b(+)CD11c(+) dendritic cells and TNF-producing macrophages important for demyelination. Lack of glial-derived CCL2 production did not influence experimental autoimmune encephalomyelitis by altering either Th1 or Th17 cells, as there were no differences in these populations in the CNS or periphery between groups. These results demonstrate that the glial-derived CCL2 is important for the attraction of TNF- and iNOS-producing dendritic cells and effector macrophages to the CNS for development of subsequent autoimmune disease.  相似文献   

20.
Multiple sclerosis (MS) is a progressive degenerative disorder of the central nervous system (CNS), characterized by inflammation, demyelination and axonal loss. While the majority of MS patients experience relapsing-remitting symptoms followed by a secondary progressive phase, about 10–15% patients exhibit a primary progressive disease involving continuous progression from its onset. Here we review the role of lectin–glycan recognition systems, including those concerning siglecs, C-type lectins and galectins in the pathogenesis of MS and experimental autoimmune encephalomyelitis. Particularly, we will focus on the role of galectins in the fate of T cells, dendritic cells and CNS cell populations. Understanding the regulatory circuits governed by lectin–glycan interactions and their association with disease-associated cytokine networks will contribute to develop novel therapeutic strategies in MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号