共查询到20条相似文献,搜索用时 0 毫秒
1.
Peter E. J. Groenewegen Will J. J. van den Tweel Jan A. M. de Bont 《Applied microbiology and biotechnology》1992,36(4):541-547
Summary Resting cells of the coryneform strain NTB-1, previously incorrectly classified as Alcaligenes denitrificans NTB-1, quantitatively converted 4-chlorobenzoate (4-CBA) to 4-hydroxybenzoate (4-HBA) under strict anaerobic conditions in the presence of ferricyanide or nitrate. 4-HBA formation was enhanced by supplying anaerobic cells with glucose as an energy source. Using permeabilized cells it was shown that energy is not needed to drive the energy-dependent uptake of 4-CBA but also to convert 4-CBA into 4-HBA. In extracts it was subsequently demonstrated that a coenzymeA-thioester of 4-CBA is involved in the metabolism of 4-CBA.
Offprint requests to: P. E. J. Groenewegen 相似文献
2.
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate. 相似文献
3.
Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. 总被引:4,自引:6,他引:4 下载免费PDF全文
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate. 相似文献
4.
Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. 总被引:5,自引:5,他引:5 下载免费PDF全文
The uptake of 4-chlorobenzoate (4-CBA) in intact cells of the coryneform bacterium NTB-1 was investigated. Uptake and metabolism of 4-CBA were observed in cells grown in 4-CBA but not in glucose-grown cells. Under aerobic conditions, uptake of 4-CBA occurred with a high apparent affinity (apparent Kt, 1.7 microM) and a maximal velocity (Vmax) of 5.1 nmol min-1 mg of protein-1. At pH values below 7, the rate of 4-CBA uptake was greatly reduced by nigericin, an ionophore which dissipates the pH gradient across the membrane (delta pH). At higher pH values, inhibition was observed only with valinomycin, an ionophore which collapses the electrical potential across the membrane (delta psi). Under anaerobic conditions, no uptake of 4-CBA was observed unless an alternative electron acceptor was present. With nitrate as the terminal electron acceptor, 4-CBA was rapidly accumulated by the cells to a steady-state level, at which uptake of 4-CBA was balanced by excretion of 4-hydroxybenzoate. The mechanism of energy coupling to 4-CBA transport under anaerobic conditions was further examined by the imposition of an artificial delta psi, delta pH, or both. Uptake of 4-CBA was shown to be coupled to the proton motive force, suggesting a proton symport mechanism. Competition studies with various substrate analogs revealed a very narrow specificity of the 4-CBA uptake system. This is the first report of carrier-mediated transport of halogenated aromatic compounds in bacteria. 相似文献
5.
A bacterial strain that produces d-aminoacylase was isolated from soil and identified as Alcaligenes denitrificans subsp. xylosoxydans MI-4. l-Aminoacylase activity in this strain was only 1 to 2% of d-aminoacylase activity. d-Aminoacylase was inducibly produced. N-Acetyl-dl-leucine was the best inducer, and the d-isomer had the ability to induce the enzyme. Enzymatic resolution of N-acetyl-dl-methionine with the crude enzyme was carried out, and the d/l ratio in the resolved methionine was approximately 100/7, suggesting that resolution with crude enzymes may become possible by removing small amounts of the contaminated l-form with l-amino acid oxidase. 相似文献
6.
《Bioscience, biotechnology, and biochemistry》2013,77(9):1392-1395
The D-aminoacylase produced by Alcaligenes denitrificans DA181 was a new type of aminoacylase which had both high stereospecificity and specific activity. The molecular weight and isoelectric point of this enzyme were 58,000 and 4.4, respectively. The apparent Km and kcat values of this enzyme for N-acetyl-D-methionine were estimated to be 0.48 him and 6.24 × 104 min respectively. The optimum temperature was 45°C. The enzyme was stable up to 55°C for 1 hr in the presence of 0.2 mg/ml bovine serum albumin. The enzyme was stable in the pH range of 6.0 to 11.0 with an optimum pH of 7.5. This enzyme contained about 2.1 g atom of zinc per mole of enzyme. Enzyme activity was inhibited by incubation with EDTA. The inhibition by EDTA was fully reversed by Co2+ and partially by Zn2+. 相似文献
7.
Summary
Alcaligenes denitrificans was isolated from sewage sludge and showed a strong degradative ability towards volatile fatty acids. The organism was tested both as free cells and immobilised in calcium alginate, for the ability to degrade the sodium salt of a typical volatile fatty acid, valeric acid.In shake flask culture the immobilised cells could be used to fully degrade 18 mM valerate over ten 48 h runs before bead break up occurred. The use of beads in conventional stirred tank fermenters, and a bubble column reactor was also investigated, with a 50 ml bubble column containing 5 ml of beads giving the highest overall degradation rate of 1.8 mmol/h, for 40 h in a fed batch mode of operation. 相似文献
8.
9.
10.
Y B Yang K M Hsiao H Li H Yano A Tsugita Y C Tsai 《Bioscience, biotechnology, and biochemistry》1992,56(9):1392-1395
The D-aminoacylase produced by Alcaligenes denitrificans DA181 was a new type of aminoacylase which had both high stereospecificity and specific activity. The molecular weight and isoelectric point of this enzyme were 58,000 and 4.4, respectively. The apparent Km and kcat values of this enzyme for N-acetyl-D-methionine were estimated to be 0.48 mM and 6.24 x 10(4) min-1, respectively. The optimum temperature was 45 degrees C. The enzyme was stable up to 55 degrees C for 1 hr in the presence of 0.2 mg/ml bovine serum albumin. The enzyme was stable in the pH range of 6.0 to 11.0 with an optimum pH of 7.5. This enzyme contained about 2.1 g atom of zinc per mole of enzyme. Enzyme activity was inhibited by incubation with EDTA. The inhibition by EDTA was fully reversed by Co2+ and partially by Zn2+. 相似文献
11.
This review examines the enzymes of 4-chlorobenzoate to 4-hydroxybenzoate converting pathway found in certain soil bacteria. This pathway consists of three enzymes: 4-chlorobenzoate: Coenzyme A ligase, 4-chlorobenzoyl-Coenzyme A dehalogenase and 4-hydroxybenzoyl-Coenzyme A thioesterase. Recent progress made in the cloning and expression of the pathway genes from assorted bacterial strains is described. Gene order and sequence found among these strains are compared to reveal independent enzyme recruitment strategies. Sequence alignments made between thePseudomonas sp. strain CBS3 4-chlorobenzoate pathway enzymes and structurally related proteins contained within the protein sequence data banks suggest possible origins in preexisting -oxidation pathways. The purification and characterization of the physical and kinetic properties of the pathway enzymes are described. Where possible a comparison of these properties between like enzymes from different bacterial sources are made. 相似文献
12.
Rajiv Ahuja Niranjan Awasthi Natesan Manickam Ashwani Kumar 《Biotechnology letters》2001,23(6):423-426
Metabolism of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), a persistent metabolite of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), by an Alcaligenes denitrificans was optimal under `non-shaking' conditions, was accelerated by adding 1 g glucose l–1, and inhibited by 1 g sodium acetate l–1 or 1 g sodium succinate l–1. Addition of biphenyl, in the vapor form, to the reaction mixture did not enhance DDE metabolism. During the reaction, accumulation of conventional metabolites, 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU) and 4-chlorobenzoate, was not observed. 相似文献
13.
K Ingvorsen B H?jer-Pedersen S E Godtfredsen 《Applied and environmental microbiology》1991,57(6):1783-1789
A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H2O----HCOOH + NH3) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN-) and a wide range of aliphatic and aromatic nitriles were not hydrolyzed by intact cells of A. xylosoxidans subsp. denitrificans DF3. Strain DF3 hydrolyzed cyanide with great efficacy. Thus, by using resting induced cells at a concentration of 11.3 mg (dry weight) per ml, the cyanide concentration could be reduced from 0.97 M (approximately 25,220 ppm) to less than 77 nM (approximately 0.002 ppm) in 55 h. Enzyme purification established that cyanide hydrolysis by A. xylosoxidans subsp. denitrificans DF3 was due to a single intracellular enzyme. The soluble enzyme was purified approximately 160-fold, and the first 25 NH2-terminal amino acids were determined by automated Edman degradation. The molecular mass of the active enzyme (purity, greater than 97% as determined by amino acid sequencing) was estimated to be greater than 300,000 Da. The cyanide-hydrolyzing enzyme of A. xylosoxidans subsp. denitrificans DF3 was tentatively named cyanidase to distinguish it from known nitrilases (EC 3.5.5.1) which act on organic nitriles. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(1):204-205
The l-aminoacylase produced intracellularly by Alcaligenes denitrificans DA181 was puritied to homogeneity. This enzyme had an apparent molecular weight of 80,000, and was composed of two subunits of identical molecular weight. Its isoelectric point was pH 5.1. The optimal reaction temperature and pH were 65°C and 8.0, respectively. This enzyme showed specificity toward N-acetyl-derivative of hydrophobic l-amino acids with N-acetyl-l-valine as the favored substrate, followed by N-acetyl-l-alanine. 相似文献
15.
Parjit Kaur Katrin Roß Roman A. Siddiqui Hans G. Schlegel 《Archives of microbiology》1990,154(2):133-138
A newly isolated aerobic hydrogen-oxidizing bacterium, Alcaligenes denitrificans strain 4a-2, differs from related autotrophic bacteria by containing only a single cytoplasmic, NAD-reducing hydrogenase, and by its high resistance to nickel ions, i.e. tolerance to 20 mM NiCl2. Strain 4a-2 harbors a single plasmid of about 250 kb. On helper-assisted mating of 4a-2 with Alcaligenes eutrophus strains H16,G29, and M85 nickelresistant transconjugants were selected; these did not contain the donor plasmid, however. All three transconjugants tolerated 3 to 10 mM NiCl2. The resistance was constitutively expressed. DNA/DNA hybridization showed homology with EcoRI-digested DNA of the wild type 4a-2 and transconjugants using a DNA probe containing nickel resistance genes of pMOL28. This indicated that the 4a-2 nickel resistance genes are located on the chromosome. 相似文献
16.
M W Marriott C W Smejkal H M Lappin-Scott 《Journal of industrial microbiology & biotechnology》2000,25(5):255-259
An Alcaligenes denitrificans strain able to degrade (R)-2-(2-methyl-4-chlorophenoxy)propionic acid [(R)-MCPP, mecoprop] was assessed for its ability to utilise a range of chlorophenoxyalkanoic acid herbicides in single, binary,
tertiary and quaternary combinations in batch culture. Degradation rates were rapid with single growth substrates; complete
degradation occurred within 29 h for 2,4-dichlorophenoxyacetic acid (2,4-D), 43 h for 4-chloro-2-methylphenoxyacetic acid
(MCPA) and 50 h for (R)-MCPP, respectively. After 20 h, the degradation of (RS)-2-(2,4-dichlorophenoxy)propionic acid [(RS)-2,4-DP] had ceased, with only the (R)-enantiomer being degraded. In binary combination, 2,4-D and MCPP degraded within 55 h. Degradation rates decreased when
herbicides were added in tertiary and quaternary combinations. Thus, at the whole cell level, catalysis of closely related
herbicides is likely to be facilitated by diverse enzymatic activity in A. denitrificans. Journal of Industrial Microbiology & Biotechnology (2000) 25, 255–259.
Received 16 April 2000/ Accepted in revised form 07 August 2000 相似文献
17.
Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. 总被引:2,自引:2,他引:2 下载免费PDF全文
A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H2O----HCOOH + NH3) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN-) and a wide range of aliphatic and aromatic nitriles were not hydrolyzed by intact cells of A. xylosoxidans subsp. denitrificans DF3. Strain DF3 hydrolyzed cyanide with great efficacy. Thus, by using resting induced cells at a concentration of 11.3 mg (dry weight) per ml, the cyanide concentration could be reduced from 0.97 M (approximately 25,220 ppm) to less than 77 nM (approximately 0.002 ppm) in 55 h. Enzyme purification established that cyanide hydrolysis by A. xylosoxidans subsp. denitrificans DF3 was due to a single intracellular enzyme. The soluble enzyme was purified approximately 160-fold, and the first 25 NH2-terminal amino acids were determined by automated Edman degradation. The molecular mass of the active enzyme (purity, greater than 97% as determined by amino acid sequencing) was estimated to be greater than 300,000 Da. The cyanide-hydrolyzing enzyme of A. xylosoxidans subsp. denitrificans DF3 was tentatively named cyanidase to distinguish it from known nitrilases (EC 3.5.5.1) which act on organic nitriles. 相似文献
18.
Jürgen Thiele Rudolf Müller Franz Lingens 《Applied microbiology and biotechnology》1988,27(5-6):577-580
Summary 4-Chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 showed dehalogenating activity in various organic solvents. In alcohols like methanol (150%) or ethanol (120%) higher activities than in water (100%) were obtained. In apolar solvents like petroleum ether (5%) and nhexane (5%) only trace activities were observed. The solvents did not increase the stability of the enzyme. 4-Chlorobenzoic acid methylester, a substance not soluble in water, was not dehalogenated in organic solvents. 相似文献
19.
Biological denitrification using a pure culture of Alcaligenes denitrificans was investigated in a closed rotating biological contactor, which operated with a hydraulic retention time of 2 h, a carbon/nitrogen ratio of 2:1, with a dissolved O2 concentration below 6 mg l–1 and under three different phosphate concentrations. Alcaligenes denitrificans was not repressed by O2 limitation and the removal of nitrate was about 30% more efficient at the intermediate phosphate concentration (20 mg P l–1). 相似文献
20.
Willem J.H. Van Berkel Michael H.M. Eppink Wouter J. Middelhoven Jacques Vervoort Ivonne M.C.M. Rietjens 《FEMS microbiology letters》1994,121(2):207-215
Abstract The first two steps in the catabolism of 4-hydroxybenzoate by the ascomycetous yeast Candida parapsilosis CBS604 were investigated. In contrast to the well-known bacterial pathways and to what was previously assumed, metabolism of 4-hydroxybenzoate in C. parapsilosis proceeds through initial oxidative decarboxylation to give 1,4-dihydroxybenzene. This reaction is catalyzed by a NAD(P)H and FAD-dependent 4-hydroxybenzoate 1-hydroxylase. Further metabolism of 1,4-dihydroxybenzene to the ring-fission substrate 1,2,4-trihydroxybenzene is catalyzed by a NADPH-specific FAD-dependent aromatic hydroxylase acting on phenolic compounds. 19 F-NMR experiments with cell extracts and 2-fluoro-4-hydroxybenzoate as the model compound confirm this metabolic pathway and exclude the alternative pathway proceeding through initial 3-hydroxylation followed by oxidative decarboxylation in the second step. 相似文献