首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When entrapped into liposomes composed of phosphatidylcholine and other lipids, β-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) purified from Aspergillus oryzae could cleave the β-galactosidic bond of the terminal galactose of galactocerebroside and GM1-ganglioside (II3NeuAc-GgOse4Cer, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide), while the free enzyme could not. The products of the hydrolysis of galactocerebroside were found to be β-galactose and ceramide, which was confirmed by using a fluorescent analog of galactocerebroside, 1-O-galactosyl-2-N-(1-dimethylaminonaphthalene-5-sulfonyl)-sphingosine, as substrate. The formation of GM2-ganglioside (II3NeuAc-GgOse3Cer, N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide) by the hydrolysis of GM1-ganglioside was also demonstrated. The lipid composition of the liposomes influenced the amount of the enzyme entrapped and the activity of the trapped enzyme. A large amount of the enzyme was entrapped into the liposomes composed of phosphatidylcholine-cholesterol-stearoylamine (molar ratio, 7:2:1). The enzyme trapped in the liposomes and that in those of phosphatidylcholine-cholesterol-sulfatide (molar ratio, 7:2:1) had higher activity on galactocerebroside and GM1-ganglioside than that in other liposomes. The activity of β-galactosidase trapped in liposomes was increased in the presence of detergent, while that of the free enzyme was not changed.By a similar procedure to introduce enzymes into hydrophobic environments, enzymes other than β-galactosidase might come to possess different substrate specificities.  相似文献   

2.
Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures.  相似文献   

3.
Manganese(II) complexes [Mn(L)X2] were prepared and characterized, where L is a neutral di-Schiff base ligand incorporating pyridylimine donor arms, including (1R,2R)-N,N′-bis(2-pyridylmethylidene)-1,2-diphenylethylenediimine (L1), (1R,2R)-N,N′-bis(6-methyl-2-pyridylmethylidene)-1,2-cyclohexyldiimine (L2), or (1R,2R)-, (1S,2S)- or racemic N,N′-bis(2-pyridylmethylidene)-1,2-cyclohexyldiimine (L3), and X =  or Cl. Product complexes were structurally characterized, specifically including [Mn(R,R-L1)(NCCH3)3](ClO4)2, [Mn(R,R-L2)(OH2)2](ClO4)2 and racemic [Mn(L3)Cl2]. The first of these complexes features a heptacoordinate ligand field in a distorted pentagonal bipyramid, and the latter two are hexacoordinate, but retain equatorially monovacant pentagonal bipyramidal structures. Complexes [Mn(L3)X2] (X = Cl, ) were reacted with the primary phosphine FcCH2PH2 (Fc = -C5H4FeC5H5), H2O and ethyldiazoacetate (EDA). The first two substrates prompted reactivity at a single ligand imine bond, resulting in hydrophosphination and hydrolysis, respectively. Complexes of the derivative ligands were also structurally characterized. Evidence for EDA activation was obtained by electrospray ionization mass spectrometry, but catalytic carbene transfer was not obtained.  相似文献   

4.
The structure of cholera toxin (CTAB5) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM1), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 Å. The pentameric binding portion of cholera toxin (CTB5) improved in-plane ordering over the full toxin (CTAB5) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layer with CTAB5 shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions.  相似文献   

5.
Complexes [Au(2Ac4oT)Cl][AuCl2] (1), [Au(Hpy2Ac4mT)Cl2]Cl·H2O (2), [Au(Hpy2Ac4pT)Cl2]Cl (3), [Pt(H2Ac4oT)Cl]Cl (4), [Pt(2Ac4mT)Cl]·H2O (5), [Pt(2Ac4pT)Cl] (6) and [Pt(L)Cl2OH], L = 2Ac4mT (7), 2Ac4oT (8), 2Ac4pT (9) were prepared with N(4)-ortho- (H2Ac4oT), N(4)-meta- (H2Ac4mT) and N(4)-para- (H2Ac4pT) tolyl-2-acetylpyridine thiosemicarbazone. The cytotoxic activities of all compounds were assayed against U-87 and T-98 human malignant glioma cell lines. Upon coordination cytotoxicity improved in 2, 5 and 8. In general, the gold(III) complexes were more cytotoxic than those with platinum(II,IV). Several of these compounds proved to be more active than cisplatin and auranofin used as controls. The gold(III) complexes probably act by inhibiting the activity of thioredoxin reductase enzyme whereas the mode of action of the platinum(II,IV) complexes involves binding to DNA. Cells treated with the studied compounds presented morphological changes such as cell shrinkage and blebs formation, which indicate cell death by apoptosis induction.  相似文献   

6.
Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the two most common microcystins (MCs) present in fresh water posing a direct threat to public health because of their hepatotoxicity. A novel MC-degrading bacterium designated MC-LTH1 capable of degrading MC-LR and -RR was isolated, and the degradation rates and mechanisms of MC-LR and -RR for this bacterium were investigated. The bacterium was identified as Bordetella sp. and shown to possess a homologous mlrA gene responsible for degrading MCs. To the best of our knowledge, this is the first report of mlrA gene detection in Bordetella species. MC-LR and -RR were completely degraded separately at rates of 0.31 mg/(L h) and 0.17 mg/(L h). However, the degradation rates of MC-LR and -RR decreased surprisingly to 0.27 mg/(L h) and 0.12 mg/(L h), respectively, when both of them were simultaneously present. Degradation products were identified by high performance liquid chromatography coupled with time-of-flight mass spectrometry. Adda (m/z 332.2215, C20H29NO3) commonly known as a final product of MC degradation by isolated bacteria was detected as an intermediate in this study. Linearized MC-LR (m/z 1013.5638, C49H76N10O13), linearized MC-RR (m/z 1056.4970, C49H77N13O13), and tetrapeptide (m/z 615.3394, C32H46N4O8) were also detected as intermediates. These results indicate that the bacterial strain MC-LTH1 is quite efficient for the detoxification of MC-LR and MC-RR, and possesses significant bioremediation potential.  相似文献   

7.
Several niobium and tantalum compounds were prepared that contain either the diamidoamine ligand, [(3,4,5-F3C6H2NCH2CH2)2NMe]2− ([F3N2NMe]2−), or the triamidoamine ligand, [(3,5-Cl2C6H3NCH2CH2)3N]3− ([Cl2N2NMe]3−). The former include [F3N2NMe]TaCl3, [F3N2NMe]NbCl3, [F3N2NMe]TaMe3, [F3N2NMe]NbMe3, [(F3N2NMe)TaMe2][MeB(C6F5)3], [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(CH2-t-Bu)Cl2, [F3N2NMe]Ta(CH-t-Bu)(CH3), and [F3N2NMe]Ta(η2-C2H4)(CH2CH3). The latter include [Cl2N2NMe]TaCl2, [Cl2N2NMe]TaMe2, [Cl2N2NMe]Ta(η2-C2H4), and [Cl2N2NMe]Ta(η2-C2H2).X-ray diffraction studies were carried out on [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(η2-C2H4)(CH2CH3), and [Cl2N2NMe]TaMe2..  相似文献   

8.
Reported are four iron(II) complexes with N-benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LH) and three electronically modified derivatives: N-(4-methoxy)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LOMe), N-(4-chloro)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LCl), and N-(4-nitro)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LNO2). The four ligands react with FeCl2 to form a series of mononuclear species with the general formula [Fe(LR)Cl2]. The cis-α conformation of the ligand places the amine N-donors trans to the Fe-Cl bonds. The identity of the 4-benzyl substituent has profound influences on the lengths of the iron-ligand bonds, the optical spectra, and the redox activities of the [Fe(LR)Cl2] compounds.  相似文献   

9.
Addition of 3 M NaCl to 72-h cultures of Penicillium fellutanum in 2 mM phosphate resulted in an increase in percentage of extracellular peptidophosphogalactomannan III (pPxGMiii) and a decrease in that of pPxGMii. The magnitude of 31P nuclear magnetic resonance signals at 1.47 and 1.33 ppm of phospho-1-O-[N-peptidyl-(2-aminoethanol)] phosphodiesters pPxGMii and pPxGMiii decreased compared with controls. The data suggest that serine, glycine, and threonine residues from the 3-kDa peptide and from galactofuranosyl-6-O-phospho-1′-O-[N-peptidyl-(2-aminoethanol)] residues were the precursors of the needed choline-derived osmolytes.  相似文献   

10.
Potent and selective S1P3 receptor (S1P3-R) agonists may represent important proof-of-principle tools used to clarify the receptor biological function and assess the therapeutic potential of the S1P3-R in cardiovascular, inflammatory and pulmonary diseases. N,N-Dicyclohexyl-5-propylisoxazole-3-carboxamide was identified by a high-throughput screening of MLSMR library as a promising S1P3-R agonist. Rational chemical modifications of the hit allowed the identification of N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide, a S1P3-R agonist endowed with submicromolar activity and exquisite selectivity over the remaining S1P1,2,4,5-R family members. A combination of ligand competition, site-directed mutagenesis and molecular modeling studies showed that the N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide is an allosteric agonist and binds to the S1P3-R in a manner that does not disrupt the S1P3-R–S1P binding. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the molecular basis of the receptor function, and provides the bases for further rational design of more potent and drug-like S1P3-R allosteric agonists.  相似文献   

11.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

12.
The niobium complex [NbCpClCl4] (CpClη5-C5H4(SiCl2Me)) (1) with a functionalized (dichloromethylsilyl)cyclopentadienyl ligand was isolated by the reaction of [NbCl5] with C5H4(SiCl2Me)(SiMe3). Complex 1 was a precursor for the imido silylamido derivative [NbCpNCl2(NtBu)] (CpNη5-C5H4[SiClMe(NHtBu)]) (2) after addition of LiNHtBu, which subsequently gave the dichlorosilyl compound [NbCpClCl2(NtBu)] (3) when reacted with SiCl3Me. Addition of LiNHtBu to complex 2 gave the niobium amido complex [NbCpNCl(NHtBu)(NtBu)] (4), which slowly evolved with exchange of the niobium-amido and the silicon-chloro groups to give the dichloroniobium complex [NbCpNNCl2(NtBu)] (CpNNη5-C5H4[SiMe(NHtBu)2]) (5). Reaction of 2 with excess LiNHtBu gave the silyl-η-amido constrained geometry complexes [Nb{η5-C5H4[SiMe(NHtBu)(-η-NtBu)]}(NHtBu)(NtBu)] (6) and [Nb{η5-C5H4[SiClMe(-η-NtBu)]}(NHtBu)(NtBu)] (7), whereas addition of one equimolecular amount of LiNHtBu to 5 in C6D6 afforded complex [NbCpNNCl(NHtBu)(NtBu)] (8). All of the new complexes were characterized by 1H, 13C and 29Si NMR spectroscopy.  相似文献   

13.
Reaction of VOCl2 with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH)Cl2] (1), [VO(H2Am4Me)Cl2] · 1/2HCl (2), [VO(H2Am4Et)Cl2] · HCl (3) and [VO(2Am4Ph)Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO2(2Am4DH)] (5), [VO2(2Am4Me)] (6), [VO2(2Am4Et)] (7) and [VO2(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes.  相似文献   

14.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

15.
16.
Abstract– Experimental rat neural tumors in offspring were induced transplacentally by a single injection of a chemical carcinogen, ethylnitrosourea, 20mg/kg body wt, in the tail vein of the mother. The ganglioside content and pattern in these tumors and the normal tissues from which the tumors originated are described. The ganglioside content in tumors was reduced, on wet tissue weight basis, compared to normal control. However, there was no significant difference of ganglioside content on dry weight or protein basis. Altered ganglioside composition was found in most of the neural tumors. In central nervous system tumors, there was some increase in GM3 and GT1b′ (nomenclature according to Svennerholm , 1963), a marked decrease in GM1 and some decrease in GD1a, but no apparent loss in GD1b. Extreme simplification of ganglioside pattern was seen in tumors originated from peripheral nervous system. Large accumulation of GM3 with concomitant loss of all the higher gangliosides was seen. GM3 from neurinomas as well as from normal gray matter was isolated and characterized. GM3 from neurinomas separated into two bands on thin layer chromatographic plates. Both these GM3 bands had identical sphingosine and carbohydrate composition but differed in their fatty acid composition. The fast moving band had 77% of the total fatty acids as C20:0 or longer chain while the slow moving band had only 22% of the long chain fatty acids. Normal gray matter GM3 had one major band containing 82% of and only 17% of the fatty acids as C20:0 or higher. It is suggested that in the tumor cells either the specificity of the enzyme cytidine monophosphate-N-acetyl neuraminic acid: ceramide dihexoside sialyltransferase for C18.0 fatty acid containing glycolipid was altered or that the compartmentation of precursor pools for the simpler glycolipids present in normal tissue did not exist in transformed cells.  相似文献   

17.
Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid, N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.  相似文献   

18.
The synthesis of seven peptide-derived phosphinites, N-Boc-Phe-Tyr(OPPh2)-OMe (4), N-Boc-Phe-Tyr(OPEt2)-OMe (5), N-Boc-Phe-Tyr(OPCy2)-OMe (6), N-Boc-Phe-Ser(OPPh2)-OMe (7), N-Boc-Phe-Ser(OPtBu2)-OMe (8), N-Boc-Phe-Thr(OPPh2)-OMe (9), N-Boc-Phe-Thr(OPtBu2)-OMe (10) is reported. These ligands are readily coordinated to Pd(II) and Pt(II) centers giving the corresponding complexes of the type ML2Cl2 (11-20). The palladium complexes, [N-Boc-Phe-Tyr(OPPh2)-OMe]2PdCl2 (16), [N-Boc-Phe-Tyr(OPEt2)-OMe]2PdCl2 (17), [N-Boc-Phe-Tyr(OPCy2)-OMe]2PdCl2 (18), [N-Boc-Phe-Ser(OPPh2)-OMe]2PdCl2 (19) and [N-Boc-Phe-Thr(OPPh2)-OMe]2PdCl2 (20) catalyze the asymmetric phenylation of 2,3-dihydrofuran in moderate to high yields with high ee’s. The steric and electronic influences of the ligand substituents in driving the catalytic process are also discussed.  相似文献   

19.
In this study, the N,N,O metal chelator 2-pyridinecarboxaldehydeisonicotinoyl hydrazone (HPCIH, 1) and its derivatives 2-acetylpyridine-(HAPIH 2), 2-pyridineformamide-(HPAmIH, 3) and pyrazineformamide-(HPzAmIH, 4) were employed in the synthesis of four copper(II) complexes, [Cu(HPCIH)Cl2]·0.4H2O (5), [Cu(HAPIH)Cl2]·1.25H2O (6), [Cu(HPAmIH)Cl2]·H2O (7) and [Cu(HPzAmIH)Cl2]·1.25H2O (8). The compounds were assayed for their action toward Mycobacterium tuberculosis H37Rv ATCC 27294 strain and the human tumor cell lines OVCAR-8 (ovarian cancer), SF-295 (glioblastoma multiforme) and HCT-116 (colon adenocarcinoma). All copper(II) complexes were more effective in reducing growth of HCT-116 and SF-295 cells than the respective free hydrazones at 5 µg/mL, whereas only complex 7 was more cytotoxic toward OVCAR-8 lines than its ligand HPAmIH. 6 proved to be cytotoxic at submicromolar doses, whose IC50 values (0.39–0.86 µM) are similar to those ones found for doxorubicin (0.23–0.43 µM). Complexes 5 and 6 displayed high activity against M. tuberculosis (MIC = 0.85 and 1.58 µM, respectively), as compared with isoniazid (MIC = 2.27 µM), which suggests the compounds are attractive candidates as antitubercular drugs.  相似文献   

20.
In this paper, two di-substituted triazine-based ligands, 6-chloro-N,N,NN′-tetrakis-pyridin-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L1), and 6-chloro-N,N′-bis-pyridin-2-ylmethyl-N,N′-bis-thiophen-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L2), have been prepared. Reaction of CuCl2·2H2O and Cu(NO3)2·3H2O with L1 and L2 results in the formation of [Cu2Cl4(L1)]·3MeOH (compound 1), [Cu4(NO3)8(L1)2]·2.07CH2Cl2·0.93MeOH (compound 2), [Cu2Cl4(L2)2] (compound 3) and [Cu(NO3)2(L2)]·CH2Cl2 (compound 4), respectively, which have been fully characterized and determined by single-crystal X-ray crystallography, FT-IR, elemental analysis, thermogravimetric measurement and magnetic susceptibility. The dinuclear compound 1 shows strong π-π interactions between the neighboring pyridine rings. The nitrate-π (1,3,5-triazine ring) interaction with the distance of 2.755 Å in compound 2, is the closest contact reported so far. Compounds 3 and 4 are mononuclear copper(II) compounds, in which none of thiophene rings coordinates with copper(II) ion. In addition, the different orientations of two thiophene rings in compounds 3 and 4 lead to the π-π and CH2Cl2-π (thiophene ring) interactions in compound 4, but not in compound 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号