首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1-42 (Abeta(1-42)) solutions (mixtures of Abeta monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non-fibrillar forms of Abeta. It is now known that Abeta toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Abeta(1-42) oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Abeta(1-42) solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Abeta in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell-attached oligomers to receptor-like puncta, and for immunoblots that show the presence of SDS-stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno-neutralization of soluble Abeta-derived toxins. Analogous immuno-neutralization of oligomers in humans may be a key in AD vaccines.  相似文献   

2.
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation.  相似文献   

3.
Abeta40 protects non-toxic Abeta42 monomer from aggregation   总被引:1,自引:0,他引:1  
Abeta40 and Abeta42 are the predominant Abeta species in the human body. Toxic Abeta42 oligomers and fibrils are believed to play a key role in causing Alzheimer's disease (AD). However, the role of Abeta40 in AD pathogenesis is not well established. Emerging evidence indicates a protective role for Abeta40 in AD pathogenesis. Although Abeta40 is known to inhibit Abeta42 fibril formation, it is not clear whether the inhibition acts on the non-toxic monomer or acts on the toxic Abeta42 oligomers. In contrast to conventional methods that detect the appearance of fibrils, in our study Abeta42 aggregation was monitored by the decreasing NMR signals from Abeta42 monomers. In addition, differential NMR isotope labelling enabled the selective observation of Abeta42 aggregation in a mixture of Abeta42 and Abeta40. We found Abeta40 monomers inhibit the aggregation of non-toxic Abeta42 monomers, in an Abeta42/Abeta40 ratio-dependent manner. NMR titration revealed that Abeta40 monomers bind to Abeta42 aggregates with higher affinity than Abeta42 monomers. Abeta40 can also release Abeta42 monomers from Abeta42 aggregates. Thus, Abeta40 likely protects Abeta42 monomers by competing for the binding sites on pre-existing Abeta42 aggregates. Combining our data with growing evidence from transgenic mice and human genetics, we propose that Abeta40 plays a critical, protective role in Alzheimer's by inhibiting the aggregation of Abeta42 monomer. Abeta40 itself, a peptide already present in the human body, may therefore be useful for AD prevention and therapy.  相似文献   

4.
Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.  相似文献   

5.
beta-Amyloid peptide (Abeta) is the major constituent of senile plaques, the key pathological feature of Alzheimer's disease. Abeta is physiologically produced as a soluble form, but aggregation of Abeta monomers into oligomers/fibrils causes neurotoxic change of the peptide. In nature, many microorganisms accumulate small molecule chaperones (SMCs) under stressful conditions to prevent the misfolding/denaturation of proteins and to maintain their stability. Hence, it is conceivable that SMCs such as ectoine and hydroxyectoine could be potential inhibitors against the aggregate formation of Alzheimer's Abeta, which has not been studied to date. The current work shows the effectiveness of ectoine and hydroxyectoine on the inhibition of Abeta42 aggregation and toxicity to human neuroblastoma cells. The characterization tools used for this study include thioflavin-T induced fluorescence, atomic force microscopy and cell viability assay. Considering that ectoine and hydroxyectoine are not toxic to cellular environment even at concentrations as high as 100 mM, the results may suggest a basis for the development of ectoines as potential inhibitors associated with neurodegenerative diseases.  相似文献   

6.
Self-assembly of Abeta(1-42) into globular neurotoxins   总被引:4,自引:0,他引:4  
Amyloid beta 1-42 (Abeta(1-42)) is a self-associating peptide that becomes neurotoxic upon aggregation. Toxicity originally was attributed to the presence of large, readily formed Abeta fibrils, but a variety of other toxic species are now known. The current study shows that Abeta(1-42) can self-assemble into small, stable globular assemblies free of fibrils and protofibrils. Absence of large molecules was verified by atomic force microscopy (AFM) and nondenaturing gel electrophoresis. Denaturing electrophoresis revealed that the globular assemblies comprised oligomers ranging from trimers to 24mers. Oligomers prepared at 4 degrees C stayed fibril-free for days and remained so when shifted to 37 degrees C, although the spectrum of sizes shifted toward larger oligomers at the higher temperature. The soluble, globular Abeta(1-42) oligomers were toxic to PC12 cells, impairing reduction of MTT and interfering with ERK and Rac signal transduction. Occasionally, oligomers were neither toxic nor recognized by toxicity-neutralizing antibodies, suggesting that oligomers could assume alternative conformations. Tests for oligomerization-blocking activity were carried out by dot-blot immunoassays and showed that neuroprotective extracts of Ginkgo biloba could inhibit oligomer formation at very low doses. The observed neurotoxicity, structure, and stability of synthetic Abeta(1-42) globular assemblies support the hypothesis that Abeta(1-42) oligomers play a role in triggering nerve cell dysfunction and death in Alzheimer's disease.  相似文献   

7.
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.  相似文献   

8.
Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.  相似文献   

9.
Alzheimer's disease (AD) may be caused by toxic aggregates formed from amyloid-beta (Abeta) peptides. By using Thioflavin T, a dye that specifically binds to beta-sheet structures, we found that highly toxic forms of Abeta-aggregates were formed at the initial stage of fibrillogenesis, which is consistent with recent reports on Abeta oligomers. Formation of such aggregates depends on factors that affect both nucleation and elongation. As reported previously, addition of Abeta42 systematically accelerated the nucleation of Abeta40, most likely because of the extra hydrophobic residues at the C terminus of Abeta42. At Abeta42-increased specific ratio (Abeta40: Abeta42 = 10: 1), on the other hand, not only accelerated nucleation but also induced elongation were observed, suggesting pathogenesis of early-onset AD. Because a larger proportion of Abeta40 than Abeta42 was still required for this phenomenon, we assumed that elongation does not depend only on hydrophobic interactions. Without any change in the C-terminal hydrophobic nature, elongation was effectively induced by mixing wild type Abeta40 with Italian variant Abeta40 (E22K) or Dutch variant (E22Q). We suggest that Abeta peptides in specific compositions that balance hydrophilic and hydrophobic interactions promote the formation of toxic beta-aggregates. These results may introduce a new therapeutic approach through the disruption of this balance.  相似文献   

10.
The Alzheimer's Abeta40 peptide forms soluble oligomers that are extremely potent neurotoxins and strongly impede synapses function. In this study the formation and structure of the large, soluble, neurotoxic Abeta40 oligomer called "beta-ball" were characterized by two-dimensional NMR, circular dichroism, fluorescence spectroscopy, hydrogen exchange, and equilibrium sedimentation. In acidic aqueous solution, half the Abeta40 molecules are in the beta-ball state; the remainder are monomeric. The equilibrium between the two states is slow as judged by NMR linewidths and is stable for months. The kinetics of beta-ball formation from monomer are biphasic with tau1 = 7 min and tau2 = 80 min with no transient helix formation. Monomeric Abeta40 is essentially devoid of stable secondary structure, although the central, Leu17-Ala21, and C-terminal, Gly29-Val40, hydrophobic regions show propensity toward adopting extended structure, and residues 22-25 tended to form a turn. We found that sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) binds to the central hydrophobic region of monomeric Abeta40. DSS binds beta-balls more strongly and caused them to double in size. Plausible micelle-like models for the beta-ball structure with and without bound DSS are presented.  相似文献   

11.
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.  相似文献   

12.
Alzheimer's disease (AD) is characterized by large numbers of senile plaques in the brain that consist of fibrillar aggregates of 40- and 42-residue amyloid-beta (Abeta) peptides. However, the degree of dementia in AD correlates better with the concentration of soluble Abeta species assayed biochemically than with histologically determined plaque counts, and several investigators now propose that soluble aggregates of Abeta are the neurotoxic agents that cause memory deficits and neuronal loss. These endogenous aggregates are minor components in brain extracts from AD patients and transgenic mice that express human Abeta, but several species have been detected by gel electrophoresis in sodium dodecylsulfate (SDS) and isolated by size exclusion chromatography (SEC). Endogenous Abeta aggregation is stimulated at cellular interfaces rich in lipid rafts, and anionic micelles that promote Abeta aggregation in vitro may be good models of these interfaces. We previously found that micelles formed in dilute SDS (2 mM) promote Abeta(1-40) fiber formation by supporting peptide interaction on the surface of a single micelle complex. In contrast, here we report that monomeric Abeta(1-42) undergoes an immediate conversion to a predominant beta-structured conformation in 2 mM SDS which does not proceed to amyloid fibrils. The conformational change is instead rapidly followed by the near quantitative conversion of the 4 kDa monomer SDS gel band to 8-14 kDa bands consistent with dimers through tetramers. Removal of SDS by dialysis gave a shift in the predominant SDS gel bands to 30-60 kDa. While these oligomers resemble the endogenous aggregates, they are less stable. In particular, they do not elute as discrete species on SEC, and they are completed disaggregated by boiling in 1% SDS. It appears that endogenous oligomeric Abeta aggregates are stabilized by undefined processes that have not yet been incorporated into in vitro Abeta aggregation procedures.  相似文献   

13.
Two conformers of aggregated Abeta, i.e., fibrils and oligomers, have been deemed important in the pathogenesis of Alzheimer's disease. We now report that intravenous immune globulin (IVIG) derived from pools of human plasma contains IgGs that recognize conformational epitopes present on fibrils and oligomers, but not their soluble monomeric precursor. We have used affinity chromatography to isolate these antibodies and have shown that they cross-reacted with comparable nanomolar avidity with both types of Abeta aggregates; notably, binding was not inhibited by soluble Abeta monomers. Our studies provide further support for investigating the therapeutic use of IVIG in Alzheimer's disease.  相似文献   

14.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

15.
Recent studies have suggested that non-fibrillar soluble forms of Abeta peptides possess neurotoxic properties and may therefore play a role in the molecular pathogenesis of Alzheimer's disease. We have identified solution conditions under which two types of soluble oligomers of Abeta40 could be trapped and stabilized for an extended period of time. The first type of oligomers comprises a mixture of dimers/tetramers which are stable at neutral pH and low micromolar concentration, for a period of at least four weeks. The second type of oligomer comprises a narrow distribution of particles that are spherical when examined by electron microscopy and atomic force microscopy. The number average molecular mass of this distribution of particles is 0.94 MDa, and they are are stable at pH 3 for at least four weeks. Circular dichroism studies indicate that the dimers/tetramers possess irregular secondary structure that is not alpha-helix or beta-structure, while the 0.94 MDa particles contain beta-structure. Fluorescence resonance energy transfer experiments indicate that Abeta40 moieties in amyloid fibrils or protofibrils are more similar in structure to those in the 0.94 MDa particles than those in the dimers/tetramers. These findings indicate that soluble oligomeric forms of Abeta peptides can be trapped for extended periods of time, enabling their study by high resolution techniques that would not otherwise be possible.  相似文献   

16.
BACKGROUND: The amyloid beta (Abeta) peptide is a key molecule in the pathogenesis of Alzheimer's disease. Reliable methods to detect and quantify soluble forms of this peptide in human biological fluids and in model systems, such as cell cultures and transgenic animals, are of great importance for further understanding the disease mechanisms. In this study, the application of new and highly specific ELISA systems for quantification of Abeta40 and Abeta42 (Abeta peptides ending at residues 40 or 42, respectively) in human cerebrospinal fluid (CSF) are presented. MATERIALS AND METHODS: Monoclonal antibodies WO-2, G2-10 and G2-11 were thoroughly characterized by (SPOT) epitope mapping and immunoprecipitation/mass spectrometry. We determined whether aggregation affected the binding capacities of the antibodies to synthetic peptides and whether components of the CSF affected the ability of the antibodies to bind synthetic Abeta1-40 and Abeta1-42 peptides. The stability of Abeta40 and Abeta42 in CSF during different temperature conditions was also studied to optimize sample handling from lumbar puncture to Abeta assay. RESULTS: The detection range for the ELISAs were 20-250 pM. The intra-assay variations were 2% and 3%, and the inter-assay variations were 2% and 10% for Abeta40 and Abeta42, respectively. The antibodies specifically detected the expected peptides with equal affinity for soluble and fibrillar forms of the peptide. The presence of CSF obstructed the recognition of synthetic peptides by the antibodies and the immunoreactivity of endogenous CSF Abeta decreased with increasing storage time and temperature. CONCLUSIONS: This study describes highly sensitive ELISAs with thoroughly characterized antibodies for quantification of Abeta40 and Abeta42, an important tool for the understanding of the pathogenesis of Alzheimer's disease. Our results pinpoint some of the difficulties associated with Abeta quantification and emphasize the importance of using a well-documented assay.  相似文献   

17.
Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that is known to suppress aggregation and toxicity of Abeta42 in vitro. In the Drosophila brain, Abeta42Arc formed more oligomers and deposits than did wild type Abeta42, while Abeta42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Abeta peptides. Surprisingly, however, Abeta42art caused earlier onset of memory defects than Abeta42. More remarkably, each Abeta induced qualitatively different pathologies. Abeta42Arc caused greater neuron loss than did Abeta42, while Abeta42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Abeta aggregates: Abeta42Arc formed large deposits in the cell body, Abeta42art accumulated preferentially in the neurites, while Abeta42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Abeta42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo.  相似文献   

18.
Soluble oligomers of the amyloid beta-protein (Abeta) are linked to Alzheimer's disease. Irrespective of the nature of the nucleus before fibril growth, dimers are essential species in Abeta assembly, but their transient character has precluded, thus far, high-resolution structure determination. We have investigated the effects of the point mutation A21G on Abeta dimers by performing high temperature all-atom molecular dynamics simulations of Abeta(40), Abeta(42), and their Flemish variants (A21G) starting from their fibrillar conformations. Abeta dimers are found in equilibrium between various topologies, and the absence of common structural features shared by the four species makes problematic the design of a unique inhibitor for blocking dimers. We also show that the impact of the point mutation A21G on Abeta structure and dynamics varies from Abeta(40) to Abeta(42). Finally, we provide a possible structural explanation for the reduced aggregation rate of Abeta fibrils containing the Flemish disease-causing mutation.  相似文献   

19.
Selective application of metal chelators to homogenates of human Alzheimer's disease (AD) brain has led us to propose that the architecture of aggregated beta-amyloid peptide, whether in the form of plaques or soluble oligomers, is determined at least in part by high-affinity binding of transition metals, especially copper and zinc. Of the two metals, copper is implicated in reactive oxygen species generating reactions, while zinc appears to be associated with conformational and antioxidant activity. We tested the copper chelators trientine, penicillamine, and bathophenanthroline for their ability to mobilize brain Abeta as measured against our benchmark compound bathocuproine (BC). All of these agents were effective in solubilizing brain Abeta, although BC was the most consistent across the range of AD brain tissue samples tested. Similarly, all of the copper chelators depleted copper in the high-speed supernatants. BC alone had no significant effect upon zinc levels in the soluble fraction. BC extraction of brain tissue from C100 transgenic mice (which express human Abeta but do not develop amyloid) revealed SDS-resistant dimers as Abeta was mobilized from the sedimentable to the soluble fraction. NMR analysis showed that, in addition to its copper chelating properties, BC interacts with Abeta to form a complex independent of the presence of copper. Such hybrid copper chelating and "chain breaking" properties may form the basis of a rational design for a therapy for Alzheimer's disease.  相似文献   

20.
Sequential cleavage of the amyloid precursor protein (APP) by beta- and then gamma- secretase gives rise to Abeta(1-40) (Abeta40), a major species of Abeta (beta-amyloid) produced by neurons under physiological conditions. Abeta(1-42) (Abeta42), a minor species of Abeta, is also produced by a similar but less understood mechanism of the gamma-secretase. The physiological functions of these Abeta species remain to be defined. In this report, we demonstrate that freshly prepared soluble Abeta40 significantly promotes neurogenesis in primary neural progenitor cells (NPCs). First, Abeta40 increases neuronal markers as determined by NeuN expression and Tuj1 promoter activity, differing from Abeta42, which induces astrocyte markers in NPCs. Second, Abeta40 induces neuronal differentiation at the end of S-phase in the cell cycle. Third, Abeta40 promotes NPC entry into S-phase, playing a role in NPC self-renewal. Interestingly, Abeta40 does not significantly increase apoptotic indexes such as DNA condensation and DNA fragmentation. In addition, Abeta40 does not augment caspase-3 activation in NeuN(+) or nestin(+) cells. Collectively, this report provides strong evidence that Abeta40 is a neurogenic factor and suggests that the debilitated function of Abeta40 in neurogenesis may account for the shortage of neurons in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号