首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract: The immunological properties and the functional role of the first (loop I) and second (loop II) extracellular loops of the human serotonin 5-HT1A receptor were studied with three populations of anti-peptide antibodies: Ab-1 (loop I; sequence Y-Q-V-L-N-K-W-T-L-G-Q-V-T-C-D-L; residues 96–111), Ab-2 (loop II; sequence G-W-R-T-P-E-D-R-S-D-P-D-A-C-T-I-S-K-D-H-G; residues 173–193), and Ab-12 (produced against loop I but cross-reacting with loop II). Chemical modification of peptide amino acid residues revealed the importance of the polyanionic stretch near the N-terminal domain of loop II for Ab-2 antibody binding and the role of the cysteine residues in both loops for the binding of Ab-1 and Ab-12 antibodies. Antibodies Ab-2 and Ab-12 recognized only the nonglycosylated form of the receptor (42 kDa) on immunoblots with transfected HeLa cells expressing the human 5-HT1A receptor but recognized the glycosylated forms (55 and 65 kDa) of rat 5-HT1A receptor from hippocampus membranes. The Ab-1 antibodies recognized no protein band from any cell type studied. Preincubation of transfected HeLa cell membranes with Ab-2 antibodies revealed two affinity binding sites of the 5-HT1A receptor (KDH = 0.54 ± 0.09 nM and KDL = 13.74 ± 4.9 nM) for the agonist 8-hydroxy-2-(di-n-[3H]propylamino)tetralin ([3H]8-OH-DPAT) binding, but Ab-1 and Ab-12 revealed only one site (KD of ≈2.5 nM). In contrast to the Ab-2 antibodies, Ab-1 and Ab-12 antibodies decreased the Bmax of the [3H]8-OH-DPAT binding to 42 and 31%, respectively. These findings suggest that there are at least two epitopes on the extracellular loops: one inducing a high-affinity state for agonist binding and the other interfering with the accessibility of the ligand binding pocket.  相似文献   

2.
3.
ADP-glucose pyrophosphorylase is the enzyme responsible for the regulation of glycogen synthesis in bacteria. The enzyme N-terminal domain has a Rossmann-like fold with three neighbor loops facing the substrate ATP. In the Escherichia coli enzyme, one of those loops also faces the regulatory site containing Lys39, a residue involved in binding of the allosteric activator fructose-1,6-bisphosphate and its analog pyridoxal-phosphate. The other two loops contain Trp113 and Gln74, respectively, which are highly conserved among all the ADP-glucose pyrophosphorylases. Molecular modeling of the E. coli enzyme showed that binding of ATP correlates with conformational changes of the latter two loops, going from an open to a closed (substrate-bound) form. Alanine mutants of Trp113 or Gln74 did not change apparent affinities for the substrates, but they became insensitive to activation by fructose-1,6-bisphosphate. By capillary electrophoresis we found that the mutant enzymes still bind fructose-1,6-bisphosphate, with similar affinity as the wild type enzyme. Since the mutations did not alter binding of the activator, they must have disrupted the communication between the regulatory and the substrate sites. This agrees with a regulatory mechanism where the interaction with the allosteric activator triggers conformational changes at the level of loops containing residues Trp113 and Gln74.  相似文献   

4.
The preparation and melting of a 16 base-pair duplex DNA linked on both ends by C12H24 (dodecyl) chains is described. Absorbance vs temperature curves (optical melting curves) were measured for the dodecyl-linked molecule and the same duplex molecule linked on the ends instead by T4 loops. Optical melting curves of both molecules were measured in 25, 55, and 85 mM Na+ and revealed, regardless of [Na +], the duplex linked by dodecyl loops is more stable by at least 6°C than the same duplex linked by T4 loops. Experimental curves in each salt environment were analyzed in terms of the two-state and multistate theoretical models. In the two-state, or van't Hoff analysis, the melting transition is assumed to occur in an all-or-none manner. Thus, the only possible states accessible to the molecule throughout the melting transition are the completely intact duplex and the completely melted duplex or minicircle. In the multistate analysis no assumptions regarding the melting transition are required and the statistical occurrence of every possible partially melted state of the duplex is explicitly considered. Results of the analysis revealed the melting transitions of both the dodecyl-linked molecule and the dumbbell with T4 end loops are essentially two state in 25 and 55 mM Na+. In contrast, significant deviations from two-state behavior were observed in 85 m MNa+. From our previously published melting data of DNA dumbbells with Tn end loops where n = 2, 3, 4, 6, 8, 10, 14 [T. M. Paner, M. Amaratunga, and A. S. Benight, (1992) Biopolymers, Vol. 32, pp. 881–892] and the dumbbell with T4 end loops of this study, a plot of d(Tm)/d ln [Na+] was constructed. Extrapolation of this data to n = 1 intersects with the value of d (Tm)/d ln [Na+] obtained for the alkyl-linked dumbbell, suggesting the salt-dependent stability of the alkyl-linked molecule behaves as though the duplex of this molecule were linked by end loops comprised of a single T residue. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The maps of the lampbrush chromosomes of Triturus (Amphibia urodela)   总被引:3,自引:3,他引:0  
The lampbrush chromosomes of Triturus vulgaris meridionalis were isolated from the germinal vesicle of medium and large-sized oocytes and studied with phase-contrast microscope. The maps were constructed on the basis of the lengths and major morphological features of the chromosomes. The length of each map is equal to the mean of the relative lengths of the corresponding chromosome from different oocytes (the relative length of each chromosome is represented by the ratio between its absolute length and that of chromosome XII from the same complement, conventionally considered as 100 units long). The maps arranged in decreasing length order, were oriented according to the most frequent position of chiasmata, as centromeres were not always evident. — Chromosomes VI and XI bear a sphere in subterminal position. Landmarks typical for T. vulgaris meridionalis are the loops inserted on chromosomes VIII (47 units), X (23 units), XI (34 units) and XII (34 units) frequently presenting themselves under the form of double loop bridges of considerable extension. On chromosomes I (4 units), VI (13 units), X (4 units) and XI (36 units) giant bodies were found that are sometimes comparable to dense-matrix loops. Chromosome XI includes a nucleolus-organizing region, sometimes identifiable by the presence of an inserted nucleolus. Normal and granular loops (much extended at times), axial granules, globules, and loopless bars supplement the morphology of the lampbrush chromosomes of this species.  相似文献   

6.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison.  相似文献   

7.
The transfer of antibiotic resistance between bacteria is mediated by mobile genetic elements such as plasmids and transposons. TnpX is a member of the large serine recombinase subgroup of site‐specific recombinases and is responsible for the excision and insertion of mobile genetic elements that encode chloramphenicol resistance in the pathogens Clostridium perfringens and Clostridium difficile. TnpX consists of three structural domains: domain I contains the catalytic site, whereas domains II and III contain DNA‐binding motifs. We have solved the solution structure of residues 1–120 of the catalytic domain I of TnpX. The TnpX catalytic domain shares the same overall fold as other serine recombinases; however, differences are evident in the identity of the proposed hydrogen donor and in the size, amino acid composition, conformation, and dynamics of the TnpX active site loops. To obtain the interaction surface of TnpX1–120, we titrated a DNA oligonucleotide containing the circular intermediate joint attCI recombination site into 15N‐labeled TnpX1–120 and observed progressive nuclear magnetic resonance chemical shift perturbations using 15N HSQC spectra. Perturbations were largely confined to a region surrounding the catalytic serine and encompassed residues of the active site loops. Utilizing the perturbation map and the data‐driven docking program, HADDOCK, we have generated a model of the DNA interaction complex for the TnpX catalytic domain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This study was focused on developing catalytically active β‐lactamase enzyme molecules that have target‐recognizing sites built within their scaffold. Using phage‐display approach, nine libraries were constructed by inserting the randomized linear or cysteine‐constrained heptapeptides in the five different loops on the outer surface of P99 β‐lactamase molecule. The pIII signal peptide of Sec‐pathway was employed for a periplasmic translocation of the β‐lactamase fusion protein, which we found more efficient than the DsbA signal peptide of SRP‐pathway. The randomized heptapeptide loops replaced native amino acids between positions 34Y‐37K, 238M‐246A, 275N‐280A, 305A‐311S, or 329I‐334I of the P99 β‐lactamase molecules for generating the loop‐1 to ‐5 libraries, respectively. The diversity of each loop library was judged by counting the primary and β‐lactamase‐active clones. The linear peptide inserts in the loop‐2 library showed the maximum number of the β‐lactamase‐active clones, followed by the loop‐5, loop‐3, and loop‐4. The insertion of the cysteine‐constrained loops exhibited a dramatic loss of the enzyme‐active β‐lactamase clones. The complexity of the loop‐2 linear library, as determined by the frequency and diversity of amino acid distributions in the randomized region, appears consistent with the standards of other types of phage display library systems. The selection of the loop‐2 linear library on streptavidin protein as a test target identified several β‐lactamase clones that specifically bound to streptavidin. In conclusion, this study identified the suitability of the loop‐2 of P99 β‐lactamase for constructing a phage‐display library of the β‐lactamase enzyme‐active molecules that can be selected against a target. This is an enabling step in our long‐term goal of developing bifunctional β‐lactamase molecules against cancer‐specific targets for enzyme prodrug therapy of cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Several investigations have suggested that body fat distribution is influenced by nonpathologic variations in the responsiveness to Cortisol. Genetic variations in the glucocorticoid receptor (GRL) could therefore potentially have an impact on the level of abdominal fat. A restriction fragment length polymorphism (RFLP) has previously been detected with the BelI restriction enzyme in the GRL gene identifying two alleles with fragment lengths of 4.5 and 2.3 kb. This study investigates whether abdominal fat areas measured by computerized tomography (CT) are associated with this polymorphism in 152 middle-aged men and women. The less frequent 4.5-kb allele was found to be associated with a higher abdominal visceral fat (A VF) area independently of total body fat mass (4.5/4.5 vs. 2.3/2.3 kb genotype; men: 190.7 ± 30.1 vs. 150.7 ± 33.3 cm2, p=0.04; women: 132.7 ± 37.3 vs. 101.3 ± 34.5 cm2, p=0.06). However, the association with AVF was seen only in subjects of the lower tertile of the percent body fat level. In these subjects, the polymorphism was found to account for 41% (p=0.003) and 35% (p=0.007), in men and women, respectively, of the total variance in AVF area. The consistent association between the GRL polymorphism detected with BelI and AVF area suggests that this gene or a locus in linkage disequilibrium with the BelI restriction site may contribute to the accumulation of AVF.  相似文献   

11.
A single form of exo-type cellulase (Exo I; Mw, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units.

Exo I was proteolyzed by papain into two fragments; GPExo (Mw, 9,000) and Exo I′ (Mw, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I′ had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I′ between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo 1′.  相似文献   

12.
The 20.5-kbp maxi-circle from the kinetoplast DNA of Trypanosoma brucei contains a 5-kbp segment which is not cut by most restriction endonucleases and which varies in size in closely-related trypanosome strains (Borst, P., Fase-Fowler, F., Hoeijmakers, J.H.J. and Frasch, A.C.C. (1980) Biochim. Biophys. Acta 610, 197–210). We have now analysed partial denaturation maps of the linearized maxi-circles by electron microscopy and find that the variable segment is not more AT-rich than the remainder of the maxi-circle. Early denaturation begins at two separate regions of the maxi-circle outside the variable region and one of these corresponds with the position of the gene for the large (12 S) ribosomal RNA. Denaturation-renaturation of maxi-circles leads to the formation of partially mismatched duplexes that look like underwound loops in electron micrographs. These loops are only found in the variable region and they vary in size and appearance. Under our renaturation conditions single-stranded maxi-circle DNA is devoid of secondary structure and this suggests that the underwound loops arise by misalignment of straight tandem repeats in the DNA. We have also analysed heteroduplexes between maxi-circles from two closely related T. brucei strains that differ by 1 kbp in the size of their variable segment. Most molecules had no underwound loops and contained mismatched regions in the variable segment only. The appearance of these regions is diverse, varying from fully duplex with two single-stranded loops to molecules with a heterogeneous array of smaller loops. The total size of single-stranded DNA in the heteroduplexes may be as high as 1.2 μm, i.e., a factor 4 higher than the size difference between the heteroduplex partners. We conclude that the variable region consists of imperfect tandem repeats of a sequence that evolves rapidly. This region might contain the origin of maxi-circle replication.  相似文献   

13.
Lipopolysaccharide (LPS), particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-antigen modification is mediated by glucosyltransferase (gtr) genes encoded by temperate serotype-converting bacteriophages. The gtrV and gtrX genes encode the GtrV and GtrX glucosyltransferases, respectively. These are integral membrane proteins, which catalyze the transfer of a glucosyl residue via an α1,3 linkage to rhamnose II and rhamnose I of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a and X, respectively. Essential regions in the topology of GtrV protein were identified by in vivo recombination and a PCR-mediated approach. A series of GtrX-GtrV and GtrV-GtrX chimeric proteins were constructed based on the fact that GtrV and GtrX share sequence similarity. Analysis of their respective serotype conversion abilities led to the identification of two important periplasmic loops: loops No 2 and No 10 located in the N- and C-termini, respectively. Within these two loops, three conserved motifs were identified; two in loop No 2 and one in loop No 10. These conserved motifs contain acidic residues which were shown to be critical for GtrV function.  相似文献   

14.
The objective of this study was to quantify motion and feeding behaviour of the small calanoid Clausocalanus furcatus, which is a common and abundant species in oligotrophic environments. Adult females were video recorded at 60 fields s-1 using video equipment which allowed us to follow each free-swimming individual continuously in 3 1 vessels. At 20C under dark conditions, C.furcatus moved continuously along convoluted small loops at a mean speed of 10 mm s-1 (corresponding to 10 body lengths s-1). This motion was occasionally interrupted by sudden somersaulting performed at very high speed (up to 17 mm s-1). The copepods only occasionally sank. There was no evidence that C.furcatus created feeding currents. Dinoflagellate cells offered as food appeared to be perceived by direct encounter at high speed, being instantaneously captured and ingested or rejected. The capture rates were correlated with the frequency of somersaulting. By moving fast and by associating a high turning rate with a high frequency of crossing the previous tracks, C.furcatus searched 22-26% of the explored volumes. The motion and feeding behaviour of C.furcatus show that the foraging tactic of this species is to explore small volumes of water rapidly. This strategy appears, so far, to be unique among small planktonic copepods.   相似文献   

15.
Mnemiopsin 1 (Mn1) and Mnemiopsin 2 (Mn2) are photoproteins found in Mnemiopsis leidyi. We have tried to answer the question of whether the structural features of photoproteins can explain the observed activity data. According to the activity measurements data, they have the same characteristic wavelength. However, the initial intensity of Mn2 is significantly higher than that of Mn1, and decay time of Mn1 (0.92 s−1) is lower than that of Mn2 (1.46 s−1). The phylogenetic analysis demonstrates that, compared with Obelin and Aequorin from Obelia longissima and Aequorea victoria, respectively, a gene modification event may have caused the expansion of the N-terminal side of all photoproteins from M. leidyi. An in silico study has shown that the stability of the photoprotein–substrate complex of Mn2 is higher than that of Mn1, indicating a higher affinity of the substrate for Mn2 compared with Mn1. It was revealed that the active EF-hand loops 1 and III in Mn2 is locally more rigid compared with those in Mn1. We concluded that different stability of the photoprotein complexes leads to different initial intensity. While different patterns of the local dynamics of loops I and III may influence the decay rate.  相似文献   

16.
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.  相似文献   

17.
Summary The phenotype of the variegation position effect white-mottled-2 in Drosophila hydei is modified by supernumerary Y chromosomes and by fractions thereof. Different translocated Y fragments have varying degrees of effectiveness in suppressing the mutant phenotype in the mottled eyes. In fragments derived from similar regions of the Y chromosome the suppressive ability is related to their cytological lengths. In contrast, fragments derived from distinctive regions of the Y chromosome differ markedly in their effectiveness, and these differences are not necessarily correlated with the cytological length. In particular, fragments of the distal region of YL are more effective in enhancing the wild phenotype than are proximal fragments of similar size.The mutation white-mottled-2 is accompanied by a complex rearrangement of the X chromosome. This inhibits crossing over between large regions of the X chromosome in structural heterozygotes; it causes also a delay of development and a considerable reduction of viability in homozygous females and hemizygous males. XO males are inviable. The inviability of these males is partially covered by Y fragments. With respect to viability, the fragments show similar regional differences in effectiveness as in the modification of the mottled phenotype.There is also a parental effect on the modulation of the white-mottled-2 phenotype.There is no correlation between the activity of Y chromosomal factors on spermiogenesis and the activity of Y factors on the modification of the variegation position effect. Suppression of Y chromosomal sites which normally unfold lampbrush loops during the spermatocyte stage and whose activity has previously been shown to be indispensible for normal differentiation of the male germ line cells does not result in any visible alterations of the effectiveness on the mottling. So there is obviously independence between these two different genetic activities of Y chromosomal factors.  相似文献   

18.
Organisms associated with another species may experience both costs and benefits from their partner. One of these costs is competition, which is the more likely if the two species are ecologically similar. Parabioses are associations between two ant species that share a nest and often attend the same food sources. Albeit parabioses are probably mutualistic, parabiotic partners may compete for food. We therefore investigated feeding niches and dietary overlap of two parabiotically associated ants in Borneo using cafeteria experiments and stable isotope analyses. The two species strongly differed in their food choices. While Crematogaster modiglianii mostly foraged at carbohydrate‐rich baits, Camponotus rufifemur preferred urea‐rich sources. Both species also consumed animal protein. The 15N concentration in Ca. rufifemur workers was consistently lower than in Cr. modiglianii. Camponotus rufifemur but not Cr. modiglianii possesses microbial endosymbionts, which can metabolize urea and synthesize essential amino acids. Its lower 15N signature may result from a relatively higher intake of plant‐based or otherwise 15N‐depleted nitrogen. Isotopic signatures of the two partners in the same parabiosis showed strongly parallel variation across nests. As we did not find evidence for spatial autocorrelation, this correlation suggests an overlap of food sources between the two ant species. Based on model simulations, we estimated a diet overlap of 22–66% for nitrogen sources and 45–74% for carbon sources. The overlap may arise from either joint exploitation of the same food sources or trophallactic exchange of food. This suggests an intense trophic interaction and potential for competition between the parabiotic partners.  相似文献   

19.
Summary N and I group plasmids, which increase methylmethane sulfonate (MMS) mutagenesis in lexA + strains of E. coli WP2 may be divided into two classes: those restoring part of the mutability of lexA - strains (class I) and those leaving lexA - strains non-mutable (class II). Almost complete restoration of MMS mutability is obtained by class I plasmids in a partially suppressed lexA rnm strain, while class II plasmids cause far fewer MMS revertants in this strain than in lexA +. A pair of class I and II plasmids in lexA - shows a synergistic effect on mutability. These two classes do not coincide with plasmid division into incompatibility groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号