首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied two unrelated male probands with mild ornithine transcarbamylase (OTC) (E.C.2.1.3.3) deficiency presenting a similar clinical course. Previous analyses of their liver OTCs also revealed similar properties. To identify the underlying molecular defects, we first cloned the entire coding region of the OTC gene from one proband and found a single base-substitution (C to T) leading to the substitution of tryptophan for arginine at amino acid position 277. Using a genomic amplification technique followed by allele specific oligonucleotide hybridization, we identified the same point mutation in the OTC gene of the other proband. We observed the presence of the mutation among family members in at least three generations, and in one asymptomatic hemizygous sibling in each family.  相似文献   

2.
Ornithine transcarbamylase (OTC) (E.C.2.1.3.3) is an X-linked hepatic enzyme in the urea cycle necessary for ammonia detoxification. Deficiency of OTC results in neonatal hyperammonemia, coma, and death in childhood. Because fibroblasts do not express OTC, prenatal diagnosis in the past has required fetal liver biopsy. Using a complementary DNA (cDNA) for OTC for Southern blot analysis of genomic DNA, we have found probands with complete OTC deficiency from two unrelated families in whom the same TaqI restriction endonuclease site has been altered because of independent, but not necessarily identical, mutations in the OTC gene, suggesting that this site may be a relative hotspot for mutation at a location that is critical for normal gene function. This TaqI alteration has allowed the identification of the individual in each family in whom the mutation originated as well as the exclusion of a recurrence of OTC deficiency in a male fetus at risk for the disease. OTC deficiency joins the growing list of genetic disorders for which Southern blot analysis allows accurate heterozygote detection and prenatal diagnosis in conditions for which they were not previously available.  相似文献   

3.
Summary Ornithine transcarbamylase (OTC) deficiency is the most common inborn error of the urea cycle in humans and is responsible for lethal neonatal hyperammonemia in males. Partial OTC deficiency also occurs in females and can be responsible for life-threatening hyperammonemic comas in heterozygotes. The cosegregation of the trait with a 5.8-kb abnormal MspI fragment in an affected family led us to hypothesize that this unexpected migration pattern was related to the mutation event in this particular family. Using polymerase chain reaction amplification of the specific mRNA derived from a post-mortem biopsy of the liver, we found that the MspI site located in the seventh exon of the gene was abolished and we finally identified a C-to-T transition at codon 225 of the cDNA, changing a proline to a leucine in the protein. Subsequent digestion of amplified exon 7 using the restriction enzyme MspI allowed direct screening for the mutant genotype during the next pregnancy. The present study supports the view that direct detection of the mutant genotype using either Southern blotting or digestion of amplified exons of the gene can contribute to genetic counselling in non-informative families. Finally, since MspI digestions are routinely performed for restriction fragment length polymorphism-based family studies in OTC deficiency, we suggest that the possible presence of the 5.8-kb abnormal fragment should be investigated on Southern blots of affected individuals.  相似文献   

4.
The arg-12(s) mutation of Neurospora causes a partial block in the ornithine transcarbamylase (OTC) reaction. Strains carrying this mutation will use endogenous ornithine, but not exogenous ornithine, as a precursor of arginine. Certain strains carrying arg-12(s) may be used for direct selection of variants able to use exogenous ornithine as an arginine precursor. Among eight such derivatives, six lacked the catabolic enzyme ornithine transaminase (OTA). All six mutations were alleles of a single gene, designated ota, on linkage group III. No mutation affected arginase, the first enzyme in the catabolic pathway with OTA. Strains carrying ota mutations alone are vigorous prototrophs, but, unlike wild-type Neurospora, fail to use ornithine efficiently as a sole nitrogen source. The selection method by which ota mutants arose suggests that OTA is severely competitive with OTC for exogeneous ornithine.  相似文献   

5.
Ornithine transcarbamylase (OTC) deficiency is an X-linked trait and is one of the most frequent of the inherited urea cycle enzyme deficiencies. Most male patients with OTC deficiency develop a hyperammonemic crisis and die in the neonatal period or in early infancy. In contrast to those patients, in some male patients the disease first becomes overt in adolescence or during the reproductive age period. In the present report, we describe six such male patients who first developed clinical signs at ages ranging from 6 to 58 years, all of whom came from a limited area of the northern part of Kyushu Island in southern Japan. The mutation analysis disclosed a R40H mutation in exon 2 of the OTC gene in each of these patients. Transmission of this mutant gene through paternal lineage as well as through maternal lineage was documented in one family. The levels of mRNA of the mutant OTC gene expressed in transfected Cos 1 cells and in the liver tissue obtained by biopsy in one patient were both similar to those of the wild-type gene. The activity of the mutant OTC was, however, decreased to a level of 28% of the wild-type OTC, and the levels of the mutant OTC protein expressed in Cos 1 cells were decreased, as assessed by western blot analysis. Apparent K m values of the mutant enzyme for ornithine (1.1 mM) and carbamylophosphate (2.0 mM) were similar to those of the wild-type enzyme. Both enzymes gave similar pH-dependency profiles, giving a maximal activity at pH 7.8–7.9. Activity of wild-type OTC expressed in Cos 1 cells did not change after five cycles of freezing and thawing, whereas that of the mutant OTC decreased to 17% by this treatment. These results suggest that deficiency is due to inactivation of the mutant OTC under certain conditions. Received: 15 May 1996  相似文献   

6.
Ornithine transcarbamylase (OTC) is one of 5 enzymes in the detoxification of ammonia to urea, and its deficiency, an X-linked disease, is the most common inborn error of urea genesis in humans. Because of the devastating nature of the disease there is a strong demand for reliable and rapid molecular analyses in OTC families in order to offer carrier detection and prenatal diagnosis. This paper presents the efficiency of direct and indirect mutation analyses in 22 OTC families using Southern blotting and polymerase chain reaction (PCR) amplification. For 89% of the mothers with an affected child, at least 1 RFLP of the OTC locus was informative concerning prenatal diagnosis. 100% informativity was reached by using the additional flanking markers 754 and LI.28. In total, 3 deletions (14%) and 1 TaqI site mutation (4.5%) in exon 3 were detected. 13 (60%) of our 22 mothers were found to be carriers, 9 of them being obligate carriers and 4 detected by biochemical testing. 4 mothers were excluded as carriers by DNA analyses, and in 5 mothers the carrier status could not be assessed positively. DNA analyses permitted carrier detection in 32% and carrier exclusion in 55% of 22 female relatives. Prenatal diagnosis was performed in 4 families: in 1 family by direct mutation detection and in 3 families by linkage analyses. It was possible to determine the mutation origin in 6 families, all of them with male probands. In 4 families the mutation had occurred during grandpaternal spermiogenesis, suggesting higher mutation rates in males, but in 2 cases it was the result of an event during maternal oogenesis, proving that new mutations in the OTC gene do also occur in eggs. Our recommended strategy for carrier detection and prenatal diagnosis in OTC deficiency is to examine routinely Southern blots of BamHI, EcoRI, HindIII, MspI, PstI and TaqI digestions using the OTCcDNA probe pH0731 and the flanking markers 754 and LI.28, as well as the TaqI-digested PCR products of exons 3, 5 and 9.  相似文献   

7.
Ornithine transcarbamylase (OTC) is an X-linked, liver-specific enzyme that catalyzes the second step of the urea cycle. In humans, inherited deficiency of OTC in hemizygous affected males usually results in severe ammonia intoxication and early death. To characterize mutations responsible for OTC deficiency, we used the PCR to amplify cDNAs prepared from patient livers which demonstrated no OTC enzyme activity and no OTC cross-reacting material on western blots. In three of seven cases, smaller than normal products were observed. Sequencing of these cDNAs revealed that two were missing exon 7 of the OTC gene and that the other was missing the first 12 bp of exon 5. Sequencing of genomic DNA from these three patients revealed that one mutant missing exon 7 had a T-to-C substitution in the 5' splice donor site of intron 7. The other mutant missing exon 7 had an A-to-G change in the third position of intron 7. It is interesting that both of these mutations resulted in skipping the preceding exon rather than in inclusion of some or all of the affected intron. In the third mutant, an A-to-T substitution was found in the 3' splice acceptor site at the end of intron 4. Here, a cryptic splice acceptor site within exon 5 was used. Northern blotting of liver RNA from these patients demonstrated (a) reduced, but significant, amounts of OTC mRNA in one of the patients who had a deleted exon 7 but (b) very little OTC mRNA in the other two patients. We propose that these point mutations, which result in aberrant splicing of the OTC pre-mRNAs, lead to OTC deficiency through either decreased efficiency of mRNA export from the nucleus to the cytosol or synthesis of enzyme subunits that are unstable and rapidly degraded. We speculate that abnormal mRNA splicing may represent a relatively common mechanism in the pathogenesis of this disease.  相似文献   

8.
Ornithine transcarbamylase (OTC) deficiency is an X-linked disease with a heterogeneous phenotype, even in affected males. To detect mutations in the OTC gene using genomic DNA, we have developed a method in which all exons and adjacent introns are amplified and sequenced. Although this approach detected mutations in many cases, the relationship between a mutation and the OTC phenotype was not firmly established. Therefore, we investigated the issue by expression analysis of mutant OTC cDNA in cultured cells. Four mutant OTC cDNAs were constructed, based on the reported cases, using our newly developed method. The normal (wild-type) human OTC cDNA was reproducibly expressed at high levels in these Cos 1 cells. Predicted OTC activities of mutant OTC cDNAs ranged from 0% to 8.9% of the normal level together with variable amounts of the enzyme protein. The predicted enzyme activities account for the clinical phenotype of the disease. Our observations confirm that these mutations are responsible for OTC deficiency in these patients.  相似文献   

9.
We analyzed DNA from 13 males with ornithine transcarbamylase (OTC) deficiency for gene deletions and known point mutations using the polymerase chain reaction (PCR), allelle-specific oligonucleotide (ASO) hybridization, and Southern blotting with full-length OTC cDNA and exon-specific probes. Three patients were found to have deletions: one was missing the whole OTC gene; a second patient had a deletion of both exon 7 and 8; and the third had a deletion of exon 9. Only one of the remaining 10 patients had a known point mutation consisting of a G-to-A change in nucleotide 422 of the sense strand resulting in a glutamine substitution for arginine at amino acid 109 of the mature OTC protein. This study describes the integration of various molecular methods to screen OTC-deficient patients for deletions and points mutations. Two new deletions within the OTC gene are described.  相似文献   

10.
We have found in patients with ornithine transcarbamylase (OTC) deficiency from two Spanish families (A and B), replacement by A of G at the 3-end of exon 4 of the OTC gene. The same mutation is found in the spf-ash mouse, a rodent model of mild OTC deficiency, causing a neutral R129H mutation and inefficient splicing at the 5donor site of the exon 4-intron 4 junction, with resultant 4%–7% residual OTC activity. The mutation, detected in our patients using polymerase chain reaction (PCR) amplification of the ten OTC exons, single strand conformation polymorphism (SSCP) analysis and direct sequencing of PCR-amplified exon 4, results in the loss of a unique MspI restriction site which can be used for rapid diagnosis. The mutation was transmitted by the mother in family A and arose de novo in the patient in family B. Residual OTC activity, determined in a male and a female patient, was 1.3% and 3.5% of normal, respectively. Despite this low activity, the surviving patients have developed normally.  相似文献   

11.
Ornithine transcarbamylase (OTC) deficiency, the most common inborn error of the urea cycle, shows an X-linked inheritance with frequent new mutations. Investigations of patients with OTC deficiency have indicated an overproportionate share of mutations at CpG dinucleotides. These statistics may, however, be biased because of the easy detection of CpG mutations by screening for TaqI and MspI restriction sites. In the present study, we investigated 30 patients, with diagnosed OTC deficiency, for new sites with an increased probability of mutation by complete DNA sequence analysis of all ten exons of the OTC gene. In six patients, two codons in exons 2 and 5, respectively, contained novel recurrent mutations, all of them affecting CpG dinucleotides. They included C to T and G to A transitions in codon 40, changing an arginine to cysteine and histidine, respectively, and a C to T transition in codon 178 causing the substitution of threonine by methionine. The first two mutations were characterized by a mild clinical course with high risk of sudden death in late childhood or early adulthood, whereas the third mutation showed a more severe phenotypic expression. In addition to these novel mutations, we identified four patients with the known R277W mutation, making it the most common point mutation of the OTC gene.  相似文献   

12.
Summary Ornithine transcarbamylase (OTC) deficiency is an X-linked disease responsible for lethal neonatal hyperammonemia in males. Partial OTC deficiency also occurs in females and can be responsible for life-threatening hyperammonemic comas in heterozygotes (15%). Increased orotic acid excretion occurs in both symptomatic and asymptomatic carriers, especially under protein loading tests. The disease is therefore partially dominant with neonatal lethality in the hemizygous male; the fraction of new mutations has previously been estimated to be low in males (point estimation = 0, upper bound of the confidence interval = 0.16) and 57% in females. Genetic counseling in this disease is difficult because it is not clear whether a negative protein loading test rules out carrier status. In an attempt to determine how reliable the test is for carrier detection, we investigated ten obligate carriers for orotic acid excretion; considering all data available, we concluded that the test is rarely negative in obligate carriers (8%). Consequently, a negative test in a mother decreases the minimum risk of being a carrier from 84% a priori to 30% if she had an affected son and from 43% a priori to 5% if she had a heterozygous daughter. Finally, the diagnosis of a new mutation in the germ cells of the maternal grandfather in one particular family could be ascertained by extensive DNA analysis.  相似文献   

13.
A novel point mutation in the lysosomal acid sphingomyelinase gene has been identified in the recently reported Serbian family with a clinically and biochemically atypical intermediate form of Niemann-Pick disease. The mutation was a T1171-->G transversion resulting in substitution of glycine for normal tryptophan at amino acid residue 391. The coding sequence was otherwise normal. All of the five affected individuals were almost certainly homoallelic, and both of the two obligate heterozygotes studied also carried the same mutation. This mutation is therefore likely to be directly associated with the atypical phenotype of these patients. Expression in COS-1 cells suggested a higher residual activity than that in cultured fibroblasts. A recently developed high-affinity rabbit antihuman sphingomyelinase antibody allowed us to study for the first time the biosynthesis, processing, and targeting of a mutant sphingomyelinase by metabolic labeling of cultured fibroblasts. The mutant enzyme protein was normally synthesized, processed, and routed to the lysosome but was apparently unstable and degraded rapidly once it reached the lysosome. Together with the finding of the relatively high residual activity in COS-1 cells, we interpret our observations to mean that instability and rapid breakdown of the mature mutant enzyme protein, due to the mutation rather than direct inactivation of the catalytic activity, is the primary mechanism for the deficiency of sphingomyelinase activity in these patients. A high prevalence of this mutation in the Serbian population is likely, since the family pedigree indicates that members from four reportedly unrelated families must have contributed the same mutation.  相似文献   

14.
Single-strand conformational polymorphism (SSCP) and direct sequencing were used to confirm or deny carrier status in three families with ornithine transcarbamylase (OTC) enzyme deficiency. Two male probands with late onset OTC deficiency, whose private mutations were previously characterized, inherited the mutations form their heterozygous mothers. One of the heterozygous mothers had a false negative allopurinol test. Three female siblings of the two male probands were tested, one proved to be a carrier of the respective mutation while the other two were found to have normal alleles. In the third family, the proband was a female with late onset presentation of OTC deficiency. We found a new point mutation in this girl consisting of a guanine-tocytosine transversion at nucleotide 520 resulting in a substitution of proline for alanine at amino acid 142 of the mature OTC protein. We confirmed that this mutation occurred spontaneously and that neither of the two parents carries this mutation. We conclude that SSCP, in conjunction with direct sequencing, is a useful technique that can be practically applied for carrier testing in families with OTC deficiency.  相似文献   

15.
Four novel mutations are identified in the ornithine transcarbamylase (OTC) gene, in four patients with OTC deficiency (an X-linked disorder). The mutations represent three different categories: missense (Ile159Thr and Ala209Val), nonsense (Tyr167Stop), and causing inefficient splicing (GA in the first intronic base) with associated aberrant splicing. They are located in exons 5, and 6, and in intron 3. Two of the mutations arose de novo in the patients, and only one mutation occurs at a CpG site. The nonsense and the splicing mutation cause, respectively, lethal early onset and non-lethal, delayed early onset clinical presentations in males. Our results confirm for Spain the high genotypic heterogeneity of OTC deficiency.  相似文献   

16.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

17.
Ornithine transcarbamylase(OTC) deficiency is an X-linked trait that accounts for nearly half of all inherited disorders of the urea cycle.OTC is one of the enzymes common to both the urea cycle and the bacterial arginine biosynthesis pathway; however, the role of OTC has changed over evolution. For animals with a urea cycle, defects in OTC can trigger hyperammonemic episodes that can lead to brain damage and death. This is the fifth mutation update for human OTC with previous updates reported in 1993, 1995, 2002, and 2006. In the2006 update, 341 mutations were reported. This current update contains 417 disease-causing mutations, and also is the first report of this series to incorporate information about natural variation of the OTC gene in the general population through examination of publicly available genomic data and examination of phenotype/genotype correlations from patients participating in the Urea Cycle Disorders Consortium Longitudinal Study and the first to evaluate the suitability of systematic computational approaches to predict severity of disease associated with different types of OTC mutations.  相似文献   

18.
Combined OXPHOS-system enzyme deficiencies are observed in approximately 25% of all OXPHOS-system disturbances. Of these, combined complex I and III deficiency is relatively scarce. So far, only mtDNA and thymidine phosphorylase (TP) mutations have been associated with combined OXPHOS-system disturbances. In this report we show, for the first time, that a nuclear gene mutation in a structural, nuclear encoded complex I gene is associated with combined complex I and III deficiency. After our initial report we describe mutations in the NDUFS4 gene of complex I in two additional patients. The first mutation is a deletion of G at position 289 or 290. Amino acid 96 changes from a tryptophan to a stop codon. The mutation was found homozygous in the patient; both parents are heterozygous for the mutation. The second mutation is a transition from C to T at cDNA position 316. Codon is changed from CGA (arginine) to TGA (stop). The patient is homozygous for the mutation; both parents are heterozygous. Both mutations in the NDUFS4 gene led to a premature stop in Leigh-like patients with an early lethal phenotype. We hypothesise that the structural integrity of the OXPHOS system, in mammal supermolecular structures, may be responsible for the observed biochemical features.  相似文献   

19.
Pyruvate kinase (PK) deficiency is a rare red cell glycolytic enzymopathy. The purpose of the present investigation was to offer prenatal diagnosis for PK deficiency to a couple who had a previous child with severe enzyme deficiency and congenital non-spherocytic hemolytic anemia. PK deficiency was identified in the family by assaying the enzyme activity in red cells. Chorionic villus sampling was performed in an 11-week gestation and the mutation was located in exon 10 of the PKLR gene characterized by polymerase chain reaction and using restriction endonuclease digestion with the MspI enzyme, which was confirmed by DNA sequencing on the ABI 310 DNA sequencer. Both the parents were heterozygous for the 1436G-->A [479 Arg-->His] mutation in exon 10 and the proband was homozygous for this mutation. The fetus was also heterozygous for this mutation and the pregnancy was continued. Prenatal diagnosis allowed the parents with a severely affected child with PK deficiency to have the reproductive choice of having the fetus tested in a subsequent pregnancy.  相似文献   

20.
IL2RG, the gene encoding the common γ chain, γc, of the receptor for interleukin-2 and other cytokines, has been identified as the disease gene for severe combined immunodeficiency (SCID) of the X-linked type. Specific mutational diagnosis for X-linked SCID has thus become possible. For many women at risk for carrying an IL2RG mutation, no samples were saved from an affected male relative prior to either death or bone marrow transplantation (BMT). To establish optimal methods for genetic evaluation of such women, we compared mutational screening by single-strand conformational polymorphism, heteroduplex analysis and dideoxy fingerprinting (ddF). Abnormally migrating band patterns were followed up with direct sequencing for identification of specific mutations. The most sensitive method, ddF, detected heterozygous alterations, subsequently confirmed to represent significant mutations, in all of 19 unrelated obligate or suspected carriers studied. Some of these women, as well as others at risk for carrying an X-linked SCID mutation, enrolled in a study of prenatal diagnosis after fetal testing for gender determination. Originally using linkage analysis and, more recently, specific detection of IL2RG mutations, we evaluated pregnancies at risk for X-linked SCID prospectively on a research basis. Of 27 male fetuses tested 14 were predicted to be unaffected and confirmed to have normal immune status at birth. Among pregnancies predicted to be affected, 2 were terminated, while 11 affected males were born at term. Nine of these received neonatal BMT, one had BMT at 3 months of age, and one underwent a successful experimental in utero BMT. In our study cohort accurate prenatal diagnosis assisted decision making and expanded treatment options for families at risk for having infants with a severe, but treatable genetic disorder that presents early in life. Received: 4 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号