首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Han SO  Yukawa H  Inui M  Doi RH 《Journal of bacteriology》2003,185(20):6067-6075
The regulation of expression of the genes encoding the cellulases and hemicellulases of Clostridium cellulovorans was studied at the mRNA level with cells grown under various culture conditions. A basic pattern of gene expression and of relative expression levels was obtained from cells grown in media containing poly-, di- or monomeric sugars. The cellulase (cbpA and engE) and hemicellulase (xynA) genes were coordinately expressed in medium containing cellobiose or cellulose. Growth in the presence of cellulose, xylan, and pectin gave rise to abundant expression of most genes (cbpA-exgS, engH, hbpA, manA, engM, engE, xynA, and/or pelA) studied. Moderate expression of cbpA, engH, manA, engE, and xynA was observed when cellobiose or fructose was used as the carbon source. Low levels of mRNA from cbpA, manA, engE, and xynA were observed with cells grown in lactose, mannose, and locust bean gum, and very little or no expression of cbpA, engH, manA, engE, and xynA was detected in glucose-, galactose-, maltose-, and sucrose-grown cells. The cbpA-exgS and engE genes were most frequently expressed under all conditions studied, whereas expression of xynA and pelA was more specifically induced at higher levels in xylan- or pectin-containing medium, respectively. Expression of the genes (cbpA, hbpA, manA, engM, and engE) was not observed in the presence of most soluble di- or monosaccharides such as glucose. These results support the hypotheses that there is coordinate expression of some cellulases and hemicellulases, that a catabolite repression type of mechanism regulates cellulase expression in rapidly growing cells, and that the presence of hemicelluloses has an effect on cellulose utilization by the cell.  相似文献   

2.
《Experimental mycology》1992,16(4):253-260
Regulation of endoglucanase formation by the brown-rot fungusGloeophyllum trabeum was investigated. This fungus produced endoglucanases in the presence of monosaccharides such as glucose or mannose as the sole carbon source, but the expression of these enzymes was four to five times higher in the presence of cellulose or cellobiose. In a lactose- or glucose-containing medium, endoglucanase production was induced by cellobiose. Glucose and glycerol did not repress enzyme production. We concluded that endoglucanase production by brown-rot fungi is inducible by cellulose and not subject to catabolite repression. Cellobiose is the most effective inducer of the system.  相似文献   

3.
The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and beta- glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.  相似文献   

4.
Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly.  相似文献   

5.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

6.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

7.
Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.  相似文献   

8.
Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.  相似文献   

9.
10.
The formation and location of endo-1,4-beta-glucanases and beta-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-beta-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-beta-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. beta-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. beta-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and beta-glucosidases and the end products of cellulose degradation were determined.  相似文献   

11.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

12.
13.
The increasing demands of renewable energy have led to the critical emphasis on novel enzymes to enhance cellulose biodegradation for biomass conversion. To identify new cellulases in the ruminal bacterium Fibrobacter succinogenes, a cell extract of cellulose-grown cells was separated by ion-exchange chromatography and cellulases were located by zymogram analysis and identified by peptide mass fingerprinting. An atypical family 9 glycoside hydrolase (GH9), Cel9D, with less than 20% identity to typical GH9 cellulases, was identified. Purified recombinant Cel9D enhanced the production of reducing sugar from acid swollen cellulose (ASC) and Avicel by 1.5- to 4-fold when mixed separately with each of four other glucanases, although it had low activity on these substrates. Cel9D degraded ASC and cellodextrins with a degree of polymerization higher than 2 to glucose with no apparent endoglucanase activity, and its activity was restricted to beta-1-->4-linked glucose residues. It catalyzed the hydrolysis of cellulose by an inverting mode of reaction, releasing glucose from the nonreducing end. Unlike many GH9 cellulases, calcium ions were not required for its function. Cel9D had increased kcat/Km values for cello-oligosaccharides with higher degrees of polymerization. The kcat/Km value for cellohexaose was 2,300 times higher than that on cellobiose. This result indicates that Cel9D is a 1,4-beta-D-glucan glucohydrolase (EC 3.2.1.74) in the GH9 family. Site-directed mutagenesis of Cel9D identified Asp166 and Glu612 as the candidate catalytic residues, while Ser168, which is not present in typical GH9 cellulases, has a crucial structural role. This enzyme has an important role in crystalline cellulose digestion by releasing glucose from accessible cello-oligosaccharides.  相似文献   

14.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

15.
A method consisting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent detection of endoglucanases by blotting with a polyclonal antibody against endoglucanase I was used to investigate the effect of induction and carbon catabolite derepression on the synthesis of multiple forms of endoglucanase I by Trichoderma reesei. Five forms appeared upon growth on cellulose, whereas four and only two appeared upon growth on lactose (carbon catabolite derepression) and induction by sophorose in a resting cell system, respectively. All endoglucanases detected resembled endoglucanase I in their specificity, since they exhibited no activity toward xylan or paranitrophenyl-beta-D-lactobioside. A small (25-kilodalton) endoglucanase only appeared during growth on cellulose. None of the multiple forms arose by postsecretional modification. The results indicate that sophorose may not be the only compound mediating cellulose induction of the specific endoglucanases in T. reesei.  相似文献   

16.
17.
Effects of recycling ECF-bleached softwood kraft pulp on pulp properties were evaluated in the laboratory. The tensile strength, fiber flexibility and WRV lost during drying of the pulp were recovered by refining between the cycles which, however, resulted in deteriorated drainage properties. The recycled pulps were treated with purified Trichoderma reesei cellulases and hemicellulases and the changes in fiber properties due to enzymatic treatments were characterized. The endoglucanases (EG I and EG II) significantly improved pulp drainage already at low dosage levels, and EG II was found to be more effective at a given level of carbohydrate solubilization. Combining hemicellulases with the endoglucanase treatments increased the positive effects of the endoglucanases on pulp drainage. However, as a result of the endoglucanase treatments a slight loss in strength was observed. Combining mannanase with endoglucanase treatments appeared to increase this negative effect, whereas the impact of xylanase was not significant. Although the drainage properties of the pulps could be improved by selected enzymes, the water retention capacity of the dried hornified fibers could not be recovered by any of the enzymes tested.  相似文献   

18.
The binding specificity of the duplicated segments borne by Clostridium thermocellum endoglucanase CelD and by the cellulosome-integrating protein CipA was investigated. The fusion protein CelC-DSCelD, in which the duplicated segment of CelD was fused to the COOH terminus of endoglucanase CelC, bound with an affinity of 4.7 x 10(7) M-1 to the fusion protein MalE-RDCipA, in which the seventh receptor domain of CipA was grafted onto the COOH terminus of the Escherichia coli maltose-binding protein MalE. The affinity of CelC-DSCelD for the homologous chimeric protein MalE-RDORF3p, carrying the receptor of the surface protein ORF3p, was 6.9 x 10(6) M-1. The fusion protein CelC-DSCipA, in which the duplicated segment of CipA was grafted onto the COOH terminus of CelC, did not bind detectably to MalE-RDCipA or MalE-RDORF3p. However, Western blotting (immunoblotting) experiments indicated that the duplicated segment of CipA was able to bind to a set of C. thermocellum proteins which are different from those recognized by the duplicated segment of CelD. These results argue against the hypothesis that ORF3p interacts with the duplicated segment of CipA. More probably, ORF3p binds to individual cellulases and hemicellulases harboring duplicated segments.  相似文献   

19.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

20.
A selective procedure using synthetic substrates for determination of exo-1,4,-beta-glucanases in a mixture of exoglucanases , endoglucanases , and beta-glucosidases is formulated. The heterobiosides , p- nithrophenyl -beta-D- cellobioside ( pNPC ) or p-nitrophenyl-beta-D-lactoside ( pNPL ), were used as selective substrates for the measurement of exoglucanase activity. The exoglucanases (especially cellobiohydrolases , which split off cellobiose units from the nonreducing end of the cellulose chain) specifically act on the agluconic bond (between p-nitrophenyl and the disaccharide moiety) and not on the holosidic bond (between the two glucose units of cellobiose). The interfering effect of beta-glucosidase, which acts on both agluconic and holosidic bonds, is overcome by the addition of D-glucono-1,5-delta-lactone, a specific inhibitor of beta-glucosidases. The interference of endoglucanases , which also act on both agluconic and holosidic bonds, can be compensated for by prior standardization of the assay procedure with a purified endoglucanase from the studied mixture of cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号