首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of ethylene in growth and developmental responses to low phosphorus stress was evaluated using ethylene-insensitive 'Never-ripe' (Nr) tomato and etr1 petunia plants. Low phosphorus increased adventitious root formation in 'Pearson' (wild-type) tomato plants, but not in Nr, supporting a role for ethylene in adventitious root development and showing that ethylene is important for this aspect of phosphorus response. Low phosphorus reduced ethylene production by adventitious roots of both genotypes, suggesting that ethylene perception--not production--regulates carbon allocation to adventitious roots at the expense of other roots under low phosphorus stress. With the exception of its effect on adventitious rooting, Nr had positive effects on growth and biomass accumulation in tomato whereas etr1 tended to have negative effects on petunia. This was particularly evident during the recovery from transplanting, when the effective quantum yield of photosystem II of etr1 petunia grown with low phosphorus was significantly lower than 'Mitchell Diploid', suggesting that etr1 petunia plants may undergo more severe post-transplant stress at low phosphorus availability. Our results demonstrate that ethylene mediates adventitious root formation in response to phosphorus stress and plays an important role for quick recovery of plants exposed to multiple environmental stresses, i.e. transplanting and low phosphorus.  相似文献   

2.
Seedlings of Helianthus annuus L. were grown at an initiallyhigh relative nitrate supply rate (0.27 mol N mol N–1d–1). The supply was subsequently reduced to a low rate(0.04 mol N mol N–1 d–1). The response of leaf areadevelopment to this abrupt decrease in nitrate availabilitywas characterized by following the expansion of the primaryand secondary leaf pairs. The timing of the drop in nitratesupply was when cell division in the epidermis of the primaryleaf pair was largely complete. Reducing the availability ofnitrate had a strong effect on leaf area expansion. The finalleaf size of the primary leaf pair was affected indicating aneffect of nitrate availability on cell expansion. By the endof the experiment the secondary leaf pair was only one-thirdthe area of that on control seedlings. The role of epidermalcell turgor pressure in this growth response was assessed bydirect measurements with a miniature cell pressure probe. Noreduction in cell turgor pressure following the decrease innitrate availability was detected. It is concluded that a reductionin turgor pressure was not responsible for the reduction inleaf area expansion and it is suggested that reduced cell expansionwas due to changes in cell wall properties. Concentrations ofleaf and root abscisic acid increased following the reductionin nitrate availability. Key words: Abscisic acid, cell size, cell turgor pressure, nitrate, nitrogen, relative rate of nitrate supply  相似文献   

3.
Seasonal resource availability may act as a constraint on plant phenology and thereby influence the range of growth responses observed among populations of annual species, especially those occupying a wide range of environments. We compared a mesic and a xeric population of the non-native, annual grass, Bromus tectorum, to examine phenology in response to interspecific competition and water availability. Using a target-neighborhood approach, we assessed how phenological patterns of the two populations affected morphological and growth responses to enhanced resource availability represented by late-season soil moisture. The xeric population exhibited a highly constrained phenology and was unable to extend the growing season despite available soil resources. Because of the low phenotypic variation, allocation to reproduction was similar across resource conditions. In contrast, the mesic population flowered later and showed a more opportunistic phenology in response to late-season water availability. The mesic population was not able to maintain consistent reproductive allocation at low resource levels. The responses of the two populations to late-season water availability were not affected by the density of neighboring plants. We suggest that post-introduction selection pressure on B. tectorum in the xeric habitat has resulted in a more fixed phenology which limits opportunistic response to unpredictable, particularly late-season resource availability. Opportunistic and fixed responses represent contrasting strategies for optimizing fitness in temporally varying environments and, while both play important roles for ensuring reproductive success, these results suggest that local adaptation to temporal resource variation may reflect a balance between flexible and inflexible phenology.  相似文献   

4.
The effect of mechanical impedance on ethylene evolution and growth of preemergent maize (Zea mays L.) seedlings was investigated by pressurizing the growth medium in triaxial cells in a controlled environment. Pressure increased the bulk density of the medium and thus the resistance to growth. The elongation of maize primary roots and preemergent shoots was severely hindered by applied pressures as low as 10 kilopascals. Following a steep decline in elongation at low pressures, both shoots and roots responded to additional pressure in a linear manner, but shoots were more severely affected than roots at higher pressures. Radial expansion was promoted in both organs by mechanical impedance. Primary roots typically became thinner during the experimental period when grown unimpeded. In contrast, pressures as low as 25 kilopascals caused a 25% increase in root tip diameter. Shoots showed a slight enhancement of radial expansion; however, in contrast to roots, the shoots increased in diameter even when growing unimpeded. Such morphological changes were not evident until at least 3 hours after initiation of treatment. All levels of applied pressure promoted ethylene evolution as early as 1 hour after application of pressure. After 1 hour, ethylene evolution rates had increased 10, 32, 70, and 255% at 25, 50, 75, and 100 kilopascals respectively, and continued to increase linearly for at least 10 hours. When intact corn seedlings were subjected to a series of hourly cycles of pressure, followed by relaxation, ethylene production rates increased or decreased rapidly, illustrating tight coupling between mechanical impedance and tissue response. Seedlings exposed to 1 microliter of ethylene per liter showed symptoms similar to those shown by plants grown under mechanical impedance. Root diameter increased 5 times as much as the shoot diameter. Pretreatment with 10 micromolar aminoethoxyvinyl glycine plus 1 micromolar silver thiosulfate maintained ethylene production rates of impeded seedlings at basal levels and restored shoot and root extension to 84 and 90% of unimpeded values, respectively. Our results support the hypothesis that ethylene plays a pivotal role in the regulation of plant tissue response to mechanical impedance.  相似文献   

5.
Golluscio RA  Oesterheld M 《Oecologia》2007,154(1):207-217
The variation of plant water use efficiency (WUE) with water availability has two interacting components: a plastic response, evident when individuals of the same genotype are compared (e.g. wet versus dry years), and an interspecific response, evident when different species living in habitats with different water availability are compared. We analysed the WUE of 25 Patagonian species that belong to four life forms (grasses, shrubs, annual herbs and perennial herbs) in relation to the climatic conditions of 2 years and the mean historic water availability experienced by each species. To estimate water availability, we calculated the effective soil water potential (EWP) of each species, based on available information about soil water dynamics, phenology and root system structure. To estimate WUE, we used isotopic discrimination of leaf C (Δ13C) and mean annual water vapour difference between leaves and atmosphere (Δe) measured in situ. For the plastic response, for every species and life form, WUE increased from the dry to the wet year. We hypothesize that photosynthesis was less nutrient limited in the wet than in the dry year, facilitating higher net photosynthesis rates per unit of stomatal conductance in the wet year. For the interspecific response, WUE was lower in species native to drier habitats than in species native to wetter habitats. This response was mostly accounted for by a decrease in Δe with EWP. Annual herbs, which avoid drought in time (they have the earliest growth cycle), and shrubs, which avoid drought in space (they have the deepest roots), showed the highest EWP and WUE. We conclude that the conventional wisdom which states that the highest WUE occurs within a species during the driest years, and among species in the driest habitats, does not always hold true, and that co-existing life forms drastically differ in water availability and water economy.  相似文献   

6.
1. Patterns of sheltering and activity are of fundamental importance in the ecology of animals and in determining interactions among predators and prey. Balancing decreased mortality risk when sheltering with increased feeding rate when exposed is believed to be a key determinant of diel patterns of sheltering in many animals. 2. Despite lower foraging efficiency at night than during the day, Atlantic salmon Salmo salar parr are nocturnal during winter and at low summer temperatures. Nocturnal activity also occurs at warm water temperatures during summer, but little is known about the functional significance of this behaviour. 3. This study aimed to determine: (1) the preferred activity and shelter pattern of Atlantic salmon parr during warm summer months, and (2) their response to variations in food availability when balancing growth rate (G) and mortality risk (M), as expressed through time out of shelter. We differentiated among four potential responses to reduced food availability: (1) no response; (2) G decreases but M remains constant; (3) G remains constant but M increases; and (4) G decreases and M increases. 4. Time exposed from shelter was inversely related to food availability. Fish subject to high food availability were significantly less active during the day than those with restricted rations. However, food availability had no significant effect on the extent to which fish were active at night. There was no evidence of variation in growth rate with food availability. 5. Salmon were predominantly nocturnal at high ration levels, consistent with their previously reported behaviour during winter. Rather than switching to diurnal behaviour at high temperatures per se, as previously was supposed, it appears that the fish are diurnal only to the extent needed to sustain a growth rate, and this extent depends on food availability. 6. Atlantic salmon parr modulate the amount of time they are active rather than growth when responding to variations in food availability over an order of magnitude.  相似文献   

7.
Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation.  相似文献   

8.
Variation in mean food availability, and in the variance around the mean, affects the growth rate during development. Previous theoretical work on the influence of environmental quality or growth rates on the phenotypic traits age and size at maturation assumed that there is no variation in growth rate or food availability within a generation. We develop a stochastic dynamic programming (SDP) model of the foraging behaviour of aphidophagous syrphids, and use this model to predict when syrphids should pupate (mature) when average food availability changes, or varies stochastically, during development.The optimal strategy takes into account not only the availability of food, but also the timing of its availability. Food availability, when small, influences developmental time, but not weight at pupation. Food availability, when large, influences weight at pupation, but not developmental time. When the food supply is low, the optimal strategy adjusts the size at pupation downwards for stochastic as opposed to deterministic availability of food. The conclusions reinforce the need for life-history studies to consider state dependence and short-term variability in growth rates.  相似文献   

9.
Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.  相似文献   

10.
Growth-survival trade-offs play an important role in niche differentiation of tropical tree species in relation to light-gradient partitioning. However, the mechanisms that determine differential species performance in response to light and soil resource availability are poorly understood. To examine responses to light and soil nutrient availability, we grew seedlings of five tropical tree species for 12 mo at < 2 and 18 percent full sunlight and in two soil types representing natural contrasts in nutrient availability within a lowland dipterocarp forest in North Borneo. We chose two specialists of nutrient-rich and nutrient-poor soils, respectively, and one habitat generalist. Across all species, growth was higher in high than low light and on more nutrient rich soil. Although species differed in growth rates, the ranking of species, in terms of growth, was consistent across the four treatments. Nutrient-rich soils improved seedling survival and increased growth of three species even under low light. Slower-growing species increased root allocation and reduced specific leaf area (SLA) and leaf area ratio (LAR) in response to decreased nutrient supply. All species increased LAR in response to low light. Maximum growth rates were negatively correlated with survival in the most resource-limited environment. Nutrient-poor soil specialists had low maximum growth rates but high survival at low resource availability. Specialists of nutrient-rich soils, plus the habitat generalist, had the opposite suite of traits. Fitness component trade-offs may be driven by both light and belowground resource availability. These trade-offs contribute to differentiation of tropical tree species among habitats defined by edaphic variation.  相似文献   

11.
12.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

13.
Two abundant tallgrass prairie forb species, Ambrosia psilostachya and Vernonia baldwinii, are commonly found intact in patches where the grasses have been selectively grazed by bison. Microclimatic patterns and physiological responses of these forbs were measured in grazed and ungrazed patches. These experiments demonstrated that bison herbivory indirectly enhanced water availability and productivity of forbs growing in grazed patches. This was due primarily to the reduction in transpiring grass leaf area in grazed patches and an increase in light availability. In grazed patches, incident light at forb mid-canopy height was 53% greater than ungrazed sites at midseason and soil temperatures were always warmer (e.g., 10°C at 5 cm), perhaps enabling forbs to initiate growth earlier in the spring. Enhanced leaf xylem pressure potential and stomatal conductance in plants in grazed areas were most evident when water availability was low (i.e., late in the growing season and over short-term dry periods characteristic of the tallgrass prairie environment). Relative to individuals in ungrazed areas, end-of-season biomass of A. psilostachya was 40% greater and reproductive biomass and head number of V. baldwinii was 45% and 40% greater, respectively, in plants in grazed patches. A favorable growing environment maintained in grazed patches during periods of water limitation enhances carbon gain in forbs leading to increased biomass and potential fitness.  相似文献   

14.
We report experiments attempting to optimize the proliferative response of human B cells to rabbit anti-immunoglobulin antibody (RAHIg)-linked beads (anti-Ig beads). By choosing polyacrylamide beads of small size (3 micron) and coupling anti-Ig to them at high concentrations, beads were obtained which were both B-cell specific and more highly mitogenic than other than anti-Ig reagents and B-cell mitogens (SAC, protein A). Using these beads to activate B cells, the augmentation of the anti-Ig-induced proliferative response by added T-cell-derived growth factors was largely eliminated at high cell densities although the effect of these factors was still evident at low cell densities. However, when cultures were performed in round-bottom vessels which crowded the B cells together, the response to anti-Ig beads was independent of T-cell factors even at low B-cell densities, suggesting that normal B cells triggered by anti-Ig beads are able to maintain their own proliferation. In contrast to the proliferative response, even with the most potent anti-Ig bead preparations, no differentiation (Ig production or expression of terminal differentiation markers) was evident unless T-cell help was provided.  相似文献   

15.
Environmentally induced migration: the importance of food   总被引:1,自引:0,他引:1  
The decision to migrate or not is regarded as genetically controlled for many invertebrate and vertebrate taxa. Here, we show that the environment influences this decision. By reciprocally transplanting brown trout ( Salmo trutta L.) between two sections in a river, we show that both migratory and non-migratory behaviour can be environmentally induced; migratory behaviour developed in a river section with high brown trout densities and low specific growth rates, whereas non-migratory behaviour developed in a section with low brown trout densities and high specific growth rates. In a laboratory experiment, we tested the effect of food availability on the development of migratory and non-migratory body morphologies and found that most brown trout became migrants when food levels were low but fewer did so at high food levels. Thus, the decision to migrate seems to be a plastic response, influenced by growth opportunities.  相似文献   

16.
《Aquatic Botany》2007,86(3):236-242
Competition between two invasive plants of similar growth form, Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch), was studied in response to season and sediment fertility. These two invasive species were grown in outdoor concrete tanks in monocultures and mixtures. Five fertilization rates were tested for monocultures and two for mixtures where six combinations of planting densities were used in two seasons (spring and fall). Monitoring of plant biomass was made at the end of each of these 2-month-experiments. In contrast to E. densa, clear seasonal patterns in biomass production and in reproductive allocations of H. verticillata were evident. Competitive pressure for both species was lower during the fall experiment. Biomass production increased with fertilization for H. verticillata in monocultures and changes either in allocative ratios or in tuber production patterns were shown in response to nutrient availability. However, E. densa growth was not affected by fertilization. In most cases, H. verticillata was a better competitor than E. densa except when sediment was pure sand. Competition occurred mainly for nutrient uptake rather than for light harvesting. These results suggest that despite the similar ecology, H. verticillata may outcompete E. densa in many situations, probably due to its higher plasticity.  相似文献   

17.
Variation in somatic growth rates is of great interest to biologists because of the relationship between growth and other fitness‐determining traits, and it results from both genetic and environmentally induced variation (i.e. plasticity). Theoretical predictions suggest that mean somatic growth rates and the shape of the reaction norm for growth can be influenced by variation in predator‐induced mortality rates. Few studies have focused on variation in reaction norms for growth in response to resource availability between high‐predation and low‐predation environments. We used juvenile Brachyrhaphis rhabdophora from high‐predation and low‐predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common‐environment experiment. To test for variation in growth rates in the field, we compared somatic growth rates in juveniles in high‐predation and low‐predation environments. In the common‐environment experiment, mean growth rates did not differ between fish from differing predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and mass. Fish from low‐predation environments exhibited no significant difference in growth rate between high and low food treatments. In contrast, fish from high‐predation environments exhibited variation in growth rates between high and low food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high‐predation environment grow at a faster rate than those in low‐predation environments at the smallest sizes (comparable to sizes in the common‐environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high‐predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that predation environments may exhibit increased variation in food availability for prey fish and consequent selection for plasticity.  相似文献   

18.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

19.
A 3-liter culture vessel has been developed for the growth of animal cells in suspension at controlled pH and dissolved oxygen partial pressure (pO(2)). The culture technique allows metabolically produced CO(2) to be measured; provision can be made to control the dissolved CO(2) partial pressure. In cultures containing a low serum concentration, gas sparging to control pO(2) was found to cause cell damage. This could be prevented by increasing the serum concentration to 10%, or by adding 0.02% of the surface-active polymer Pluronic F68. The growth of mouse LS cells in batch culture without pO(2) control was found to be limited by the availability of oxygen. Maximum viable cell populations were obtained when dissolved pO(2) was controlled at values within the range 40-100 mm Hg.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号