首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Deterioration of pulmonary surfactant function has been reported in interstitial lung disease; however, the molecular basis is presently unclear. We analyzed fatty acid (FA) profiles of several surfactant phospholipid classes isolated from large-surfactant aggregates of patients with idiopathic pulmonary fibrosis (IPF; n = 12), hypersensitivity pneumonitis (n = 5), and sarcoidosis (n = 12). Eight healthy individuals served as controls. The relative content of palmitic acid in phosphatidylcholine was significantly reduced in IPF (66.8 +/- 2.5%; means +/- SE; P < 0.01) but not in hypersensitivity pneumonitis (78.5 +/- 1.8%) and sarcoidosis (78.2 +/- 3.1%; control 80.1 +/- 0.7%). In addition, the phosphatidylglycerol FA profile was significantly altered in the IPF patients, with a lower relative content of its major FA, oleic acid, at the expense of saturated FA. In the phosphatidylcholine class, a significant correlation between the impairment of biophysical surfactant function and decreased percentages of palmitic acid was noted. We conclude that significant alterations in the FA profile of pulmonary surfactant phospholipids occur predominantly in IPF and may contribute to the disturbances of alveolar surface activity in this disease.  相似文献   

2.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

3.
A radioaerosol scanning technique measuring regional clearance of sodium pertechnetate (99mTcO-4) and 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA) was used to assess changes in canine pulmonary epithelial permeability following lung irradiation. Doses of 2,000 cGy (11 dogs), 1,000 cGy (2 dogs), and 500 cGy (2 dogs) were given in one fraction to either the entire right hemithorax (500 cGy) or the right lower lung (1,000 and 2,000 cGy). Radioaerosol scans, chest roentgenograms, and computerized tomograms (CT) were obtained before and serially after irradiation. A dose of 2,000 cGy resulted in a decrease in regional pulmonary epithelial permeability to both 99mTcO4- and 99mTc-DTPA; both showed significant decreases from the 2nd wk postirradiation onward. In comparison, CT and chest roentgenogram did not become abnormal until 7.1 +/- 2.8 (SD) and 8.2 +/- 2.6 wk, respectively. Doses of 1,000 and 500 cGy produced reversible decreases in 99mTcO4- clearance. Lung morphology showed definite changes of radiation pneumonitis after 2,000 and 1,000 cGy but not after 500 cGy at approximately 9, 17, and 12 wk postirradiation, respectively. These results suggest that dose-dependent changes in pulmonary physiology may precede obvious structural alterations in radiation lung injury.  相似文献   

4.
Pulmonary surfactant in bronchoalveolar lavage fluid (BALF) and induced sputum from adults with stable asthma (n = 36) and healthy controls (n = 12) was analyzed for phospholipid and protein compositions and function. Asthmatic subjects were graded as mild, moderate, or severe. Phospholipid compositions of BALF and sputum from control subjects were similar and characteristic of surfactant. For asthmatic subjects, the proportion of dipalmitoyl phosphatidylcholine (16:0/16:0PC), the major phospholipid in surfactant, decreased in sputum (P < 0.05) but not in BALF. In BALF, mole percent 16:0/16:0PC correlated with surfactant function measured in a capillary surfactometer, and sputum mole percent 16:0/16:0PC correlated with lung function (forced expiratory volume in 1 s). Neither surfactant protein A nor total protein concentration in either BALF or sputum was altered in asthma. These results suggest altered phospholipid composition and function of airway (sputum) but not alveolar (BALF) surfactant in stable asthma. Such underlying surfactant dysfunction may predispose asthmatic subjects to further surfactant inhibition by proteins or aeroallergens in acute asthma episodes and contribute to airway closure in asthma. Consequently, administration of an appropriate therapeutic surfactant could provide clinical benefit in asthma.  相似文献   

5.
1. This study was designed to monitor the changes in surfactant quantity and function in the 72 hr following 3-methylindole (3MI) infusion in goats. 2. 3MI, at 35 mg/kg body wt, caused an increase in surfactant phospholipid isolated from lamellar bodies and lavage fluid. 3. The function of surfactant isolated from lavage fluid was tested using the pulsating bubble surfactometer. The results indicated a serious impairment in the ability to lower surface tension in vitro. 4. Results suggested 3MI caused an impaired surfactant function rather than surfactant synthesis in response to epithelial damage.  相似文献   

6.
Relationships between lung function and surfactant function and composition were examined during the evolution of acute lung injury in guinea pigs. Lung mechanics and gas exchange were assessed 12, 24, or 48 h after exposure to nebulized lipopolysaccharide (LPS). Bronchoalveolar lavage (BAL) fluid was processed for phospholipid and protein contents and surfactant protein (SP) A and SP-B levels; surfactant function was measured by pulsating bubble surfactometry. Lung elastance, tissue resistance, and arterial-alveolar gradient were moderately elevated by 12 h after LPS exposure and continued to increase over the first 24 h but began to recover between 24 and 48 h. Similarly, the absolute amount of 30,000 g pelleted SP-A and SP-B, the phospholipid content of BAL fluid, and surfactant function declined over the first 24 h after exposure, with recovery between 24 and 48 h. BAL fluid total protein content increased steadily over the first 48 h after LPS nebulization. In this model of acute lung injury, the intra-alveolar repletion of surfactant components in early recovery led to improved surfactant function despite the presence of potentially inhibitory plasma proteins.  相似文献   

7.
Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.  相似文献   

8.
In a recent study (Comp. Biochem. Physiol. B. (2010)155: 301-308) we reported that the fatty acids (FA) of the avian (7 species) total lung phospholipids (PL) (i.e. lung parenchyma and surfactant together) provide allometric properties. To test whether this allometric scaling also occurs in either of the above components, in six gallinaceous species, in a body weight range from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo) the PL FA composition (mol%) was determined in the pulmonary surfactant, in native and in thoroughly lavaged lungs (referred to as lung parenchyma). In all three components docosahexaenoic acid (DHA) showed significant and negative allometric scaling (B = -0.056, -0.17 and -0.1, respectively). Surfactant PLs provided further negative allometry for palmitic acid and the opposite was found for palmitoleate and arachidonate. In the lung parenchymal PLs increasing body weight was matched with shorter chain FAs (average FA chain length) and competing n6 and n3 end-product fatty acids (positive allometry for arachidonic acid and negative for DHA). Negative allometric scaling was found for the tissue malondialdehyde concentration in the native and lavaged lungs (B = -0.1582 and -0.1594, respectively). In these tissues strong correlation was found between the MDA concentration and DHA proportion (r = 0.439 and 0.679, respectively), denoting the role of DHA in shaping the allometric properties and influencing the extent of in vivo lipid peroxidation of membrane lipids in fowl lungs.  相似文献   

9.
The prolonged inhalations of streptomycin sulphate and isoniazid in experiments on rats decrease the content of unsaturated fatty acids and increase that of saturated ones in the phospholipids composition of lungs surfactants.  相似文献   

10.
11.
Proteolipid in bovine lung surfactant: its role in surfactant function   总被引:14,自引:0,他引:14  
The chemical and biophysical properties of the proteins in the lipid extracts of lung surfactant have not clearly been determined. These proteins were isolated from lung surfactant lipids by Sephadex LH-20 chromatography and purified with silicic acid chromatography followed by dialysis against organic solvents. The proteolipid thus obtained had a protein to phospholipid ratio of 3 to 1 (w/w). The proteolipid apoprotein had a nominal molecular weight of ca. 5 kDa. We evaluated the functional role of this proteolipid by combining it with proteolipid-depleted surfactant lipids or synthetic dipalmitoylphosphatidylcholine (DPPC) and then measuring with a pulsating bubble surfactometer. The proteolipid and DPPC recombinant reproduced the surface activity of natural lung surfactant. We conclude that this 5 kDa proteolipid apoprotein is a functionally important constituent of lung surfactant.  相似文献   

12.
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1 and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.  相似文献   

13.
目的:观察脂多糖(LPS)所致内毒素性急性肺损伤(ALI)大鼠肺泡表面活性物质(PS)的变化及硫化氢(H2S)对PS的影响,探讨H2S对肺脏的作用机制。方法:雄性SD大鼠共48只,随机分为6组(n=8):空白对照组、LPS组、LPS+NaHS低、中、高剂量组、LPS+PPG组。空白对照组给予生理盐水,LPS组给予LPS,LPS+NaHS低、中、高剂量组和LPS+PPG组分别在给予LPS3h时腹腔注射低、中、高剂量氢硫化钠(NariS)或炔丙基甘氨酸(PPG)。各组均于给予生理盐水或LPS6h时电镜下观察肺泡Ⅱ型上皮细胞(AEC-Ⅱ)的形态改变,检测血浆中H2S含量、肺组织中胱硫醚-γ-裂解酶(CSE)活性、肺泡灌洗液(BALF)中总蛋白(1P)和总磷脂(TPL)含量、及肺组织中肺泡表面活性蛋白A、B、C(SP-A、B、C)mRNA表达的变化。结果:①与空白对照组比较,LPS组AEC-Ⅱ超微结构明显受损,血浆中H2S含量、肺组织中CSE活性、BALF中TPL的含量、及肺组织中SP-A、B、CmRNA表达均明显降低(P〈0.05,P〈0.01),BALF中TP的含量明显增加(P〈0.01);②与LPS组比较,LPS+NaHS低、中、高剂量组,AEC-Ⅱ超微结构均有所恢复,血浆中H2S含量、肺组织中CSE海性、SP-AmRNA表达均明显升高(P〈0.05,P〈0.01);LPS+NaHS中、高剂量组BALF中吼含量明显增高,SP-BmRNA表达升高(P〈0.05);LPS+NaHS高剂量组BALF中,IP含量明显降低(P〈0.05);LPS+NaHS各剂量组SP-CznRNA表达无明显变化;③与LPS组比较,LPS+PPG组AEC-Ⅱ超微结构仍损伤严重,血浆中H2S含量、肺组织中CSE活性、BALF中TPL的含量、及肺组织中SP-A、B、CmRNA表达均明显降低(P〈0.05),BALF中TP的含量明显升高(P〈0.05)。结论:PS降低是内毒素性ALI的重要病理生理过程,H2S对LPS诱导的ALI有保护性作用,其机制可能与H2S对PS的调节有关。  相似文献   

14.
Inhibition of pulmonary surfactant function by phospholipases   总被引:7,自引:0,他引:7  
Previous studies have shown that respiratory failure associated with disorders such as acute pancreatitis correlates well with increased levels of phospholipase A2 (PLA2) in lung lavages and that intratracheal administration of PLA2 generates an acute lung injury. In addition, bacteria such as Pseudomonas have been shown to secrete phospholipase C (PLC). We studied the effects of these phospholipases on pulmonary surfactant activity using a pulsating bubble surfactometer. Concentrations greater than or equal to 0.1 unit/ml PLA2 destroyed surfactant biophysical activity, increasing surface tension at minimum bubble size from less than 1 to 15 mN/m. This surfactant inactivation was predominantly related to the effect of lysophosphatidylcholine on the surface film, although the fatty acids released with higher PLA2 concentrations also had a detrimental effect on surfactant function. Similarly, as little as 0.1 unit PLC increased the surface tension at minimal size of an oscillating bubble from less than 1 to 15 mN/m, an effect that could be mimicked by the addition of dipalmitin to surfactant in the absence of PLC. Moreover, lower, noninhibitory concentrations (0.01 unit/ml) of PLA2 and PLC increased the sensitivity of surfactant to other inhibitory agents, such as albumin. Thus, relatively low concentrations of PLC and PLA2 can cause severe breakdown of surfactant function and may contribute significantly to some forms of lung injury.  相似文献   

15.
Acute lung injury (ALI) is associated with diminished surfactant activity and pulmonary hypertension. NONOates are soluble NO donors which release NO in solution. Intratracheal NONOates reduce pulmonary hypertension and improve oxygenation in ALI. We hypothesized that the pharmacologic properties of NO donors would be unaltered after surfactant admixture in vitro and that aerosolized NONOate activity would be enhanced by surfactant pretreatment in vivo. NO donors were added to saline or surfactant and analyzed for nitrite/nitrate production and aortic ring vasodilation. Surfactant did not alter nitrate/nitrite production or aortic ring vasodilation. A porcine model of ALI with pulmonary hypertension was produced using intravenous oleic acid. Animals were assigned to Surfactant-Saline, Surfactant-NONOate, Saline-Saline, or Saline-NONOate groups. Saline or surfactant was instilled into the trachea, followed by gas exchange, pulmonary function, and hemodynamic measurements. NONOate or saline was then aerosolized, and additional data were collected. Oxygenation was improved in the Surfactant-NONOate group, while pulmonary hypertension was selectively reduced in both NONOate groups. Aerosolized NONOate following surfactant pretreatment improves oxygenation and reduces pulmonary hypertension in ALI.  相似文献   

16.
When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein.  相似文献   

17.
Although acute lung injury (ALI) is associated with inflammation and surfactant dysfunction, the precise sequence of these changes remains poorly described. We used oleic acid to study the pathogenesis of ALI in spontaneously breathing anesthetized rats. We found that lung pathology can occur far more rapidly than previously appreciated. Lung neutrophils were increased approximately threefold within 5 min, and surfactant composition was dramatically altered within 15 min. Alveolar cholesterol increased by approximately 200%, and even though disaturated phospholipids increased by approximately 30% over 4 h, the disaturated phospholipid-to-total phospholipid ratio fell. Although the alveolocapillary barrier was profoundly disrupted after just 15 min, with marked elevations in lung fluid ((99m)Tc-labeled diethylenetriamine pentaacetic acid) and (125)I-labeled albumin flux, the lung rapidly began to regain its sieving properties. Despite the restoration in lung permeability, the animals remained hypoxic even though minute ventilation was increased approximately twofold and static compliance progressively deteriorated. This study highlights that ALI can set in motion a sequence of events continuing the respiratory failure irrespective of the alveolar surfactant pool size and the status of the alveolocapillary barrier.  相似文献   

18.
Lamellar bodies and alveolar lavage from adult mammalian lung contain unusually high concentrations of phosphatidylglycerol that could serve as a sensitive indicator of surfactant. Phosphatidylglycerol was absent and phosphatidylinositol was correspondingly prominent in surfactant from the preterm rabbit fetus. Phosphatidylglycerol rapidly appeared and phosphatidylinositol decreased following the delivery. Surfactant isolated from the prematurely born rabbit or from humans with respiratory distress syndrome never contained phosphatidylglycerol. Comparison between lamellar bodies from fetal and postnatal rabbits revealed remarkably similar composition except for the acidic phospholipids; however, the physico-chemical properties were different. The compressibility of the surface film (i.e. the ratio of the fractional decrease in surface area and the corresponding decrease in surface tension) at low surface tensions was higher with fetal than with postnatal surfactant, whereas the difference in minimum surface tensions was small. These data suggest that phosphatidylglycerol is not an essential component required for the formation of the complex, but it improves the properties of surfactant in stabilizing the alveoli.  相似文献   

19.
20.
Abstract cDNA-RNA liquid hybridization analysis was used to compare the RNA sequence homology between two members of the Nudaurelia β virus family, Trichoplusia ni virus ( T.ni V) and Dasychira pudibunda virus ( D.p V). Heterologous hybridization experiments demonstrated that these viruses shared little sequence homology. Using oligo(dT) chromatography and oligo(dT)12–18 as a primer for cDNA synthesis it was shown that neither T.ni V nor D.p V RNA genomes possess a poly(A) tract at the 3' end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号