首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
Src Homology (SH2) domains play critical roles in signaling pathways by binding to phosphotyrosine (pTyr)-containing sequences, thereby recruiting SH2 domain-containing proteins to tyrosine-phosphorylated sites on receptor molecules. Investigations of the peptide binding specificity of the SH2 domain of the Src kinase (Src SH2 domain) have defined the EEI motif C-terminal to the phosphotyrosine as the preferential binding sequence. A subsequent study that probed the importance of eight specificity-determining residues of the Src SH2 domain found two residues which when mutated to Ala had significant effects on binding: Tyr beta D5 and Lys beta D3. The mutation of Lys beta D3 to Ala was particularly intriguing, since a Glu to Ala mutation at the first (+1) position of the EEI motif (the residue interacting with Lys beta D3) did not significantly affect binding. Hence, the interaction between Lys beta D3 and +1 Glu is energetically coupled. This study is focused on the dissection of the energetic coupling observed across the SH2 domain-phosphopeptide interface at and around the +1 position of the peptide. It was found that three residues of the SH2 domain, Lys beta D3, Asp beta C8 and AspCD2 (altogether forming the so-called +1 binding region) contribute to the selection of Glu at the +1 position of the ligand. A double (Asp beta C8Ala, AspCD2Ala) mutant does not exhibit energetic coupling between Lys beta D3 and +1 Glu, and binds to the pYEEI sequence 0.3 kcal/mol tighter than the wild-type Src SH2 domain. These results suggest that Lys beta D3 in the double mutant is now free to interact with the +1 Glu and that the role of Lys beta D3 in the wild-type is to neutralize the acidic patch formed by Asp beta C8 and AspCD2 rather than specifically select for a Glu at the +1 position as it had been hypothesized previously. A triple mutant (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) has reduced binding affinity compared to the double (Asp beta C8Ala, AspCD2Ala) mutant, yet binds the pYEEI peptide as well as the wild-type Src SH2 domain. The structural basis for such high affinity interaction was investigated crystallographically by determining the structure of the triple (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) mutant bound to the octapeptide PQpYEEIPI (where pY indicates a phosphotyrosine). This structure reveals for the first time contacts between the SH2 domain and the -1 and -2 positions of the peptide (i.e. the two residues N-terminal to pY). Thus, unexpectedly, mutations in the +1 binding region affect binding of other regions of the peptide. Such additional contacts may account for the high affinity interaction of the triple mutant for the pYEEI-containing peptide.  相似文献   

2.
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).  相似文献   

3.
Lactobacillus gasseri OLL2716 has recently been discovered as a probiotic that suppresses the growth of Helicobacter pylori and reduces gastric mucosal inflammation in humans. This has resulted in the development of a new type of probiotic yoghurt 'LG21' in Japan. In our previous study, we found an immunostimulatory AT5ACL oligodeoxynucleotide (AT-ODN) containing a unique core sequence (5'-ATTTTTAC-3') in L. gasseri JCM1131(T). Interestingly, although the AT-ODN does not contain any CpG sequences, it exerts mitogenic activity in B cells and augments Th-1-type immune responses via Toll-like receptor 9. These findings prompted us to identify strong immunostimulatory non-CpG AT-ODNs that contain the 5'-ATTTTTAC-3' motif in the genomic sequence of L. gasseri OLL2716. We identified 280 kinds of AT-ODNs in the L. gasseri OLL2716 genome. Mitogenicity and NF-kappaB gene reporting assays showed that 13 of the 280 AT-ODNs were strongly immunostimulatory when in the TLR9 transfectant. Of these, AT-ODNs LGAT-145 and LGAT-243 were the most potent. With respect to the induction of Th-1-type cytokines, LGAT-243 had the greatest activity and was more potent than the swine prototype, ODN D25. We further found that a six-base secondary loop structure containing a self-stabilized 5'-C...G-3' stem sequence is important for potent immunostimulatory activity. These results show for the first time that AT-ODNs with a specific loop and stem structure are important factors for immunostimulatory activity. Finally, we found that novel strong immunostimulatory non-CpG AT-ODNs exist in the genome of probiotic lactic acid bacteria.  相似文献   

4.
ADAMs (a disintegrin and metalloprotease) are a family of proteins that possess functional adhesive and proteolytic domains. ADAM 28 (MDC-L) is expressed by human lymphocytes and contains a disintegrin-like domain that serves as a ligand for the leukocyte integrin, alpha4beta1. To elucidate which residues comprise the alpha4beta1 binding site in the ADAM 28 disintegrin domain, a charge-to-alanine mutagenesis strategy was utilized. Each alanine substitution mutant was evaluated and compared to the native sequence for its ability to support cell adhesion of the T-lymphoma cell line, Jurkat. This approach identified ADAM 28 residues Lys(437), Lys(442), Lys(455), Lys(459), Lys(460), Lys(469), and Glu(476) as being essential for alpha4beta1-dependent cell adhesion. The epitope for a function-blocking monoclonal antibody, Dis 1-1, was localized to the N-terminal end of the ADAM 28 disintegrin domain using these same charge-to-alanine mutants. Three distinct molecular models based upon the known structures of snake venom disintegrins suggested that residues contributing to alpha4beta1 recognition are aligned on one face of the domain. This study demonstrates that residues located outside of the disintegrin loop participate in integrin recognition of mammalian disintegrins.  相似文献   

5.
The alpha(L) I (inserted or interactive) domain of integrin alpha(L)beta(2) undergoes conformational changes upon activation. Recent studies show that the isolated, activated alpha(L) I domain is sufficient for strong ligand binding, suggesting the beta(2) subunit to be only indirectly involved. It has been unclear whether the activity of the alpha(L) I domain is regulated by the beta(2) subunit. In this study, we demonstrate that swapping the disulfide-linked CPNKEKEC sequence (residues 169-176) in the beta(2) I domain with a corresponding beta(3) sequence, or mutating Lys(174) to Thr, constitutively activates alpha(L)beta(2) binding to ICAM-1. These mutants do not require Mn(2+) for ICAM-1 binding and are insensitive to the inhibitory effect of Ca(2+). We have also localized a component of the mAb 24 epitope (a reporter of beta(2) integrin activation) in the CPNKEKEC sequence. Glu(173) and Glu(175) of the beta(2) I domain are identified as critical for mAb 24 binding. Because the epitope is highly expressed upon beta(2) integrin activation, it is likely that the CPNKEKEC sequence is exposed or undergoes conformational changes upon activation. Deletion of the alpha(L) I domain did not eliminate the mAb 24 epitope. This confirms that the alpha(L) I domain is not critical for mAb 24 binding, and indicates that mAb 24 detects a change expressed in part in the beta(2) subunit I domain. These results suggest that the CPNKEKEC sequence of the beta(2) I domain is involved in regulating the alpha(L) I domain.  相似文献   

6.
The leukocyte integrin alpha(M)beta(2) (Mac-1, CD11b/CD18) is a cell surface adhesion receptor for fibrinogen. The interaction between fibrinogen and alpha(M)beta(2) mediates a range of adhesive reactions during the immune-inflammatory response. The sequence gamma(383)TMKIIPFNRLTIG(395), P2-C, within the gamma-module of the D-domain of fibrinogen, is a recognition site for alpha(M)beta(2) and alpha(X)beta(2). We have now identified the complementary sequences within the alpha(M)I-domain of the receptor responsible for recognition of P2-C. The strategy to localize the binding site for P2-C was based on distinct P2-C binding properties of the three structurally similar I-domains of alpha(M)beta(2), alpha(X)beta(2), and alpha(L)beta(2), i.e. the alpha(M)I- and alpha(X)I-domains bind P2-C, and the alpha(L)I-domain did not bind this ligand. The Lys(245)-Arg(261) sequence, which forms a loop betaD-alpha5 and an adjacent helix alpha5 in the three-dimensional structure of the alpha(M)I-domain, was identified as the binding site for P2-C. This conclusion is supported by the following data: 1) mutant cell lines in which the alpha(M)I-domain segments (245)KFG and Glu(253)-Arg(261) were switched to the homologous alpha(L)I-domain segments failed to support adhesion to P2-C; 2) synthetic peptides duplicating the Lys(245)-Tyr(252) and Glu(253)-Arg(261) sequences directly bound the D fragment and P2-C derivative, gamma384-402, and this interaction was blocked efficiently by the P2-C peptide; 3) mutation of three amino acid residues within the Lys(245)-Arg(261) segment, Phe(246), Asp(254), and Pro(257), resulted in the loss of the binding function of the recombinant alpha(M)I-domains; and 4) grafting the alpha(M)(Lys(245)-Arg(261)) segment into the alpha(L)I-domain converted it to a P2-C-binding protein. These results demonstrate that the alpha(M)(Lys(245)-Arg(261)) segment, a site of the major sequence and structure difference among alpha(M)I-, alpha(X)I-, and alpha(L)I-domains, is responsible for recognition of a small segment of fibrinogen, gammaThr(383)-Gly(395), by serving as ligand binding site.  相似文献   

7.
A Váradi  L Patthy 《Biochemistry》1984,23(9):2108-2112
It was shown previously that two sequentially nonidentical regions of human fibrin(ogen), present in fragments D and E, carry specific plasminogen-binding sites [V aradi , A., & Patthy , L. (1983) Biochemistry 22, 2440-2446]. Comparison of the affinity of a variety of fragment E species for immobilized Lys-plasminogen revealed that fragment E3e [(alpha 20/24-78, beta 54-122, gamma 1-53)2] possesses a strong plasminogen-binding site, whereas fragment E3t [(alpha 20/24-78, beta 54-120, gamma 1-53)2] has 30-fold lower affinity for the affinant . Since the two fragments differ only in the beta ( Leu121 - Lys122 ) segment, this suggests that residues beta ( Leu121 - Lys122 ), present in the triple-helical connector region of fibrin(ogen), are essential for plasminogen binding by fragment E. Reduction and alkylation of fragment E3e lead to the destruction of the plasminogen-binding site, indicating that none of the separated, alkylated polypeptide chains of the fragment are able to bind to plasminogen and probably the coiled-coil superstructure of the connector region is necessary for the maintenance of the plasminogen-binding site of fragment E.  相似文献   

8.
Within each hemidesmosome, alpha6beta4 integrin plays a crucial role in hemidesmosome assembly by binding to laminin-5 in the basement membrane zone of epithelial tissue. Recent analyses have implicated "specificity-determining loops" (SDLs) in the I-like domain of beta integrin in regulating ligand binding. Here, we investigated the function of an SDL-like motif within the extracellular I-like domain of beta4 integrin. We generated point mutations within the SDL of beta4 integrin tagged with green fluorescent protein (GFP-beta4K150A and GFP-beta4Q155L). We also generated a mutation within the I-like domain of the beta4 integrin, lying outside the SDL region (GFP-beta4V284E). We transfected constructs encoding the mutated beta4 integrins and a GFP-conjugated wild type beta4 integrin (GFP-beta4WT) into 804G cells, which assemble hemidesmosomes, and human endothelial cells, which express little endogenous beta4 integrin. In transfected 804G cells, GFP-beta4WT and GFP-beta4V284E colocalize with hemidesmosome proteins, whereas hemidesmosomal components in cells expressing GFP-beta4K150A and GFP-beta4Q155L are aberrantly localized. In endothelial cells, GFP-beta4WT and mutant proteins are co-expressed at the cell surface with alpha6 integrin. When transfected endothelial cells are plated onto laminin-5 matrix, GFP-beta4WT and GFP-beta4V284E localize with laminin-5, whereas GFP-beta4K150A and GFP-beta4Q155L do not. GFP-beta4WT and GFP-beta4V284E expressed in endothelial cells associate with the adaptor protein Shc when the cells are stimulated with laminin-5. However, GFP-beta4K150A and GFP-beta4Q155L fail to associate with Shc even when laminin-5 is present, thus impacting downstream signaling. These results provide evidence that the SDL segment of the beta4 integrin subunit is required for ligand binding and is involved in outside-in signaling.  相似文献   

9.
The leukocyte integrin alpha(M)beta(2) is a highly promiscuous leukocyte receptor capable of binding a multitude of unrelated ligands. To understand the molecular basis for the broad ligand recognition of alpha(M)beta(2), the inter-integrin chimera was created. In the chimeric integrin, the betad-alpha5 loop-alpha5 helix segment comprised of residues Lys(245)-Arg(261) from the alpha(M)I domain of alpha(M)beta(2) was inserted into the framework of alpha(L)beta(2). The construct was expressed in HEK 293 cells, and the ability of generated cells to adhere to fibrinogen and its derivatives was characterized first. Grafting the alpha(M)(Lys(245)-Arg(261)) sequence converted alpha(L)beta(2) into a fibrinogen-binding protein capable of mediating efficient and specific adhesion similar to that of wild-type alpha(M)beta(2). Verifying a switch in the binding specificity of alpha(L)beta(2), the chimeric receptor became competent to support cell migration to fibrinogen. Mutations at positions Phe(246), Asp(254), and Pro(257) within Lys(245)-Arg(261) of alpha(M)beta(2) produced significant decreases in cell adhesion, illustrating the critical role of these residues in ligand binding. The insertion of alpha(M)(Lys(245)-Arg(261)) imparted to the chimeric integrin the ability to recognize many typical alpha(M)beta(2) protein ligands. Furthermore, cells expressing the chimeric receptor, but not alpha(L)beta(2), were able to stick to uncoated plastic, which represents the hallmark of wild-type alpha(M)beta(2). These results suggest that alpha(M)(Lys(245)-Arg(261)) serves as a consensus binding site for interaction with a variety of distinct molecules and, thus, may define the degenerate recognition properties inherent to alpha(M)beta(2).  相似文献   

10.
We have determined the solution structure of the C-terminal SH2 domain of the p85 alpha subunit of human phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) in complex with a phosphorylated tyrosine pentapeptide sequence from the platelet-derived growth factor receptor using heteronuclear nuclear magnetic resonance spectroscopy. Overall, the structure is similar to other SH2 domain complexes, but displays different detail interactions within the phosphotyrosine binding site and in the recognition site for the +3 methionine residue of the peptide, the side chain of which inserts into a particularly deep and narrow pocket which is displaced relative to that of other SH2 domains. The contacts made within this +3 pocket provide the structural basis for the strong selection for methionine at this position which characterizes the SH2 domains of PI3-kinase. Comparison with spectral and structural features of the uncomplexed domain shows that the long BG loop becomes less mobile in the presence of the bound peptide. In contrast, extreme resonance broadening encountered for most residues in the beta D', beta E and beta F strands and associated connecting loops of the domain in the absence of peptide persists in the complex, implying conformational averaging in this part of the molecule on a microsecond-to-millisecond time scale.  相似文献   

11.
Swamy N  Xu W  Paz N  Hsieh JC  Haussler MR  Maalouf GJ  Mohr SC  Ray R 《Biochemistry》2000,39(40):12162-12171
We have combined molecular modeling and classical structure-function techniques to define the interactions between the ligand-binding domain (LBD) of the vitamin D nuclear receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)]. The affinity analogue 1alpha,25-(OH)(2)D(3)-3-bromoacetate exclusively labeled Cys-288 in the VDR-LBD. Mutation of C288 to glycine abolished this affinity labeling, whereas the VDR-LBD mutants C337G and C369G (other conserved cysteines in the VDR-LBD) were labeled similarly to the wild-type protein. These results revealed that the A-ring 3-OH group docks next to C288 in the binding pocket. We further mutated M284 and W286 (separately creating M284A, M284S, W286A, and W286F) and caused severe loss of ligand binding, indicating the crucial role played by the contiguous segment between M284 and C288. Alignment of the VDR-LBD sequence with the sequences of nuclear receptor LBDs of known 3-D structure positioned M284 and W286 in the presumed beta-hairpin of the molecule, thereby identifying it as the region contacting the A-ring of 1alpha, 25-(OH)(2)D(3). From the multiple sequence alignment, we developed a homologous extension model of the VDR-LBD. The model has a canonical nuclear receptor fold with helices H1-H12 and a single beta hairpin but lacks the long insert (residues 161-221) between H2 and H3. We docked the alpha-conformation of the A-ring into the binding pocket first so as to incorporate the above-noted interacting residues. The model predicts hydrogen bonding contacts between ligand and protein at S237 and D299 as well as at the site of the natural mutation R274L. Mutation of S237 or D299 to alanine largely abolished ligand binding, whereas changing K302, a nonligand-contacting residue, to alanine left binding unaffected. In the "activation" helix 12, the model places V418 closest to the ligand, and, consistent with this prediction, the mutation V418S abolished ligand binding. The studies together have enabled us to identify 1alpha,25-(OH)(2)D(3)-binding motifs in the ligand-binding pocket of VDR.  相似文献   

12.
The leukocyte integrin alpha(X)beta(2) (p150,95) recognizes the iC3b complement fragment and functions as the complement receptor type 4. alpha(X)beta(2) is more resistant to activation than other beta(2) integrins and is inactive in transfected cells. However, when human alpha(X) is paired with chicken or mouse beta(2), alpha(X)beta(2) is activated for binding to iC3b. Activating substitutions were mapped to individual residues or groups of residues in the N-terminal plexin/semaphorin/integrin (PSI) domain and C-terminal cysteine-rich repeats 2 and 3. These regions are linked by a long range disulfide bond. Substitutions in the PSI domain synergized with substitutions in the cysteine-rich repeats. Substitutions T4P, T22A, Q525S, and V526L gave full activation. Activation of binding to iC3b correlated with exposure of the CBR LFA-1/2 epitope in cysteine-rich repeat 3. The data suggest that the activating substitutions are present in an interface that restrains the human alpha(X)/human beta(2) integrin in the inactive state. The opening of this interface is linked to structural rearrangements in other domains that activate ligand binding.  相似文献   

13.
NMR structure of the human doppel protein   总被引:5,自引:0,他引:5  
The NMR structure of the recombinant human doppel protein, hDpl(24-152), contains a flexibly disordered "tail" comprising residues 24-51, and a globular domain extending from residues 52 to 149 for which a detailed structure was obtained. The globular domain contains four alpha-helices comprising residues 72-80 (alpha1), 101-115 (alpha2(a)), 117-121 (alpha2(b)), and 127-141 (alpha3), and a short two-stranded anti-parallel beta-sheet comprising residues 58-60 (beta1) and 88-90 (beta2). The fold of the hDpl globular domain thus coincides nearly identically with the structure of the murine Dpl protein. There are close similarities with the human prion protein (hPrP) but, similar to the situation with the corresponding murine proteins, hDpl shows marked local differences when compared to hPrP: the beta-sheet is flipped by 180 degrees with respect to the molecular scaffold formed by the four helices, and the beta1-strand is shifted by two residues toward the C terminus. A large solvent-accessible hydrophobic cleft is formed on the protein surface between beta2 and alpha3, which has no counterpart in hPrP. The helix alpha2 of hPrP is replaced by two shorter helices, alpha2(a) and alpha2(b). The helix alpha3 is shortened by more than two turns when compared with alpha3 of hPrP, which is enforced by the positioning of the second disulfide bond in hDpl. The C-terminal peptide segment 144-149 folds back onto the loop connecting beta2 and alpha2. All but four of the 20 conserved residues in the globular domains of hPrP and hDpl appear to have a structural role in maintaining a PrP-type fold. The conservation of R76, E96, N110 and R134 in hDpl, corresponding to R148, E168, N183 and R208 in hPrP suggests that these amino acid residues might have essential roles in the so far unknown functions of PrP and Dpl in healthy organisms.  相似文献   

14.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

15.
《The Journal of cell biology》1993,123(4):1017-1025
The alpha 6 beta 1 integrin is expressed on the macrophage surface in an inactive state and requires cellular activation with PMA or cytokines to function as a laminin receptor (Shaw, L. M., J. M. Messier, and A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). In the present study, the role of the alpha 6 subunit cytoplasmic domain in alpha 6 beta 1 integrin activation was examined. The use of P388D1 cells, an alpha 6-integrin deficient macrophage cell line, facilitated this analysis because expression of either the alpha 6A or alpha 6B subunit cDNAs restores their activation responsive laminin adhesion (Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. Biol. Chem. 268:11401-11408). A truncated alpha 6 cDNA, alpha 6-delta CYT, was constructed in which the human cytoplasmic domain sequence was deleted after the GFFKR pentapeptide. Expression of this cDNA in P388D1 cells resulted in the surface expression of a chimeric alpha 6-delta CYT beta 1 integrin that was unable to mediate laminin adhesion or increase this adhesion in response to PMA under normal conditions, i.e., in medium that contained physiological concentrations of Ca++ and Mg++. The alpha 6A-delta CYT transfectants adhered to laminin, however, when Ca++/Mg++ was replaced with 150 microM Mn++. We also assessed the role of serine phosphorylation in the regulation of alpha 6A beta 1 integrin function by site-directed mutagenesis of the two serine residues present in the alpha 6A cytoplasmic domain because this domain is phosphorylated on serine residues in response to stimuli that activate the laminin receptor function of alpha 6 A beta 1. Point mutations were introduced in the alpha 6A cDNA that changed either serine residue #1064 (M1) or serine residue #1071 (M2) to alanine residues. In addition, a double mutant (M3) was constructed in which both serine residues were changed to alanine residues. P388D1 transfectants which expressed these serine mutations adhered to laminin in response to PMA to the same extent as cells transfected with wild-type alpha 6A cDNA. These findings provide evidence for a novel mode of integrin regulation that is distinct from that reported for other regulated integrins (O'Toole, T. E., D. Mandelman, J. Forsyth, S. J. Shattil, E. F. Plow, and M. H. Ginsberg. 1991. Science (Wash. DC). 254:845-847. Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991. Science (Wash. DC). 251:1611-1613), and they demonstrate that serine phosphorylation of the alpha 6A cytoplasmic domain is not involved in this regulation.  相似文献   

16.
The N-terminal src-homology 2 domain of the p85 alpha subunit of phosphatidylinositol 3' kinase (SH2-N) binds specifically to phosphotyrosine-containing sequences. Notably, it recognizes phosphorylated Tyr 751 within the kinase insert of the cytoplasmic domain of the activated beta PDGF receptor. A titration of a synthetic 12-residue phosphopeptide (ESVDY*VPMLDMK) into a solution of the SH2-N domain was monitored using heteronuclear 2D and 3D NMR spectroscopy. 2D-(15N-1H) heteronuclear single-quantum correlation (HSQC) experiments were performed at each point of the titration to follow changes in both 15N and 1H chemical shifts in NH groups. When mapped onto the solution structure of the SH2-N domain, these changes indicate a peptide-binding surface on the protein. Line shape analysis of 1D profiles of individual (15N-1H)-HSQC peaks at each point of the titration suggests a kinetic exchange model involving at least 2 steps. To characterize changes in the internal dynamics of the domain, the magnitude of the (15N-1H) heteronuclear NOE for the backbone amide of each residue was determined for the SH2-N domain with and without bound peptide. These data indicate that, on a nanosecond timescale, there is no significant change in the mobility of either loops or regions of secondary structure. A mode of peptide binding that involves little conformational change except in the residues directly involved in the 2 binding pockets of the p85 alpha SH2-N domain is suggested by this study.  相似文献   

17.
Parkin is the gene product identified as the major cause of autosomal recessive juvenile Parkinsonism (AR-JP). Parkin, a ubiquitin ligase E3, contains a unique ubiquitin-like domain in its N-terminus designated Uld which is assumed to be a interaction domain with the Rpn 10 subunit of 26S proteasome. To elucidate the structural and functional role of Uld in parkin at the atomic level, the X-ray crystal structure of murine Uld was determined and a molecular dynamics simulation of wild Uld and its five mutants (K27N, R33Q, R42P, K48A and V56E) identified from AR-JP patients was performed. Murine Uld consists of two alpha helices [Ile23-Arg33 (alpha1) and Val56-Gln57 (alpha2)] and five beta strands [Met1-Phe7 (beta1), Tyr11-Asp18 (beta2), Leu41-Phe45 (beta3), Lys48-Pro51 (beta4) and Ser65-Arg72 (beta5)] and its overall structure is essentially the same as that of human ubiquitin with a 1.22 A rmsd for the backbone atoms of residues 1-76; however, the sequential identity and similarity between both molecules are 32% and 63%, respectively. This close resemblance is due to the core structure built by same hydrogen bond formations between and within the backbone chains of alpha1 and beta1/2/5 secondary structure elements and by nearly the same hydrophobic interactions formed between the nonpolar amino acids of their secondary structures. The side chain NetaH of Lys27 on the alpha1 helix was crucial to the stabilization of the spatial orientations of beta3 and beta4 strands, possible binding region with Rpn 10 subunit, through three hydrogen bonds. The MD simulations showed the K27N and R33Q mutations increase the structural fluctuation of these beta strands including the alpha1 helix. Reversely, the V56E mutant restricted the spatial flexibility at the periphery of the short alpha2 helix by the interactions between the polar atoms of Glu56 and Ser19 residues. However, a large fluctuation of beta4 strand with respect to beta5 strand was induced in the R42P mutant, because of the impossibility of forming paired hydrogen bonds of Pro for Arg42 in wild Uld. The X-ray structure showed that the side chains of Asp39, Gln40 and Arg42 at the N-terminal periphery of beta3 strand protrude from the molecular surface of Uld and participate in hydrogen bonds with the polar residues of neighboring Ulds. Thus, the MD simulation suggests that the mutation substitution of Pro for Arg42 not only causes the large fluctuation of beta3 strand in the Uld but also leads to the loss of the ability of Uld to trap the Rpn 10 subunit. In contrast, the MD simulation of K48A mutant showed little influence on the beta3-beta4 loop structure, but a large fluctuation of Lys48 side chain, suggesting the importance of flexibility of this side chain for the interaction with the Rpn 10 subunit. The present results would be important in elucidating the impaired proteasomal binding mechanism of parkin in AR-JP.  相似文献   

18.
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.  相似文献   

19.
The murine CD8 glycoprotein interacts with both classical MHC class I molecules and some nonclassical molecules, including the thymic leukemia Ag (TL). TL binds preferentially to CD8alphaalpha homodimers with a 10-fold higher affinity than H-2K(b) class I molecules. To understand the molecular basis for this difference, we created a panel of CD8alpha mutants and tested the ability of the CD8alphaalpha homodimers to bind to H-2K(b) tetramers and TL tetramers. Mutations in three CD8 residues located on the complementarity-determining region-like loops contacting the negatively charged loop in the alpha3 domain of MHC class I greatly reduced binding to both tetramers. Because TL and H-2K(b) class I sequences are highly conserved in the alpha3 domain of MHC class I, this suggests that CD8 contacts the alpha3 domain of TL and H-2K(b) in a similar manner. In contrast, mutations in residues on the A and B beta strands of CD8 that are involved in contact with beta(2)-microglobulin affected interaction with the H-2K(b) tetramer, but not the TL tetramer. Therefore, the orientation of interaction of TL with CD8 appears to be different from that of H-2K(b). The unique high affinity binding of TL with CD8alphaalpha is most likely a result of amino acid differences in the alpha3 domain between TL and H-2K(b), particularly at positions 198 (K to D) and 228 (M to T), which are contact residues in the CD8alphaalpha-H-2K(b) cocrystal.  相似文献   

20.
Deoxygenation-dependent association of hemoglobin tetramers appears to be widespread among amphibians, reptiles, and possibly all or most birds. The evidence for this conclusion depends largely on oxygen equilibria of whole blood which have Hill coefficients that reach values as high as 5-7 at 80-90% oxygenation. Computer simulation of the sedimentation velocity behavior of the major components A and D of chicken hemoglobin shows that component D but not A self-associates to form dimers of tetramers. The gradient profiles at pH 7.5 were satisfactorily fitted with an association constant of 1.26 x 10(4) M-1 and sedimentation coefficients of 4.63 and 7.35 S for tetramer and (tetramer)2, respectively. Since components A and D share common beta chains we conclude that tetramer-tetramer contacts must depend on surface residues of the alpha chains. Comparison of the amino acid sequences of the alpha D and alpha A chains of the hemoglobins from 12 avian species ranging from sparrow to ostrich shows that 20 residues are conserved in the alpha D chains but not in the alpha A chains. Nine of these (45%) are clustered between positions E20 and FG2. Four of the latter, Lys71 (E20), Asn75 (EF4), Gln78 (EF7), and Glu82 (F3) are conserved in all alpha D chains even though they do not appear to participate in intratetramer contacts. Molecular modeling indicates that residues Lys71, Gln78, and Glu82 of the alpha chain are strong candidates for the primary tetramer-tetramer contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号