首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
E. Bódis  B. Tóth  R. Sousa 《Hydrobiologia》2014,735(1):253-262
Large-scale mortality of invasive bivalves was observed in the River Danube basin in the autumn of 2011 due to a particularly low water discharge. The aim of this study was to quantify and compare the biomass of invasive and native bivalve die-offs amongst eight different sites and to assess the potential role of invasive bivalve die-offs as a resource subsidy for the adjacent terrestrial food web. Invasive bivalve die-offs dominated half of the study sites and their highest density and biomass were recorded at the warm water effluent. The density and biomass values recorded in this study are amongst the highest values recorded for aquatic ecosystems and show that a habitat affected by heated water can sustain an extremely high biomass of invasive bivalves. These mortalities highlight invasive bivalves as a major resource subsidy, possibly contributing remarkable amounts of nutrients and energy to the adjacent terrestrial ecosystem. Given the widespread occurrence of these invasive bivalves and the predicted increase in the frequency and intensity of extreme climatic events, the ecological impacts generated by their massive mortalities should be taken into account in other geographical areas as well.  相似文献   

2.
Introduced ecosystem engineers can severely modify the functioning on invaded systems. Species-level effects on ecosystem functioning (EF) are context dependent, but the effects of introduced ecosystem engineers are frequently assessed through single-location studies. The present work aimed to identify sources of context-dependence that can regulate the impacts of invasive ecosystem engineers on ecosystem functioning. As model systems, four locations where the bivalve Ruditapes philippinarum (Adams and Reeve) has been introduced were investigated, providing variability in habitat characteristics and community composition. As a measure of ecosystem engineering, the relative contribution of this species to community bioturbation potential was quantified at each site. The relevance of bioturbation to the local establishment of the mixing depth of marine sediments (used as a proxy for EF) was quantified in order to determine the potential for impact of the introduced species at each site. We found that R. philippinarum is one of the most important bioturbators within analysed communities, but the relative importance of this contribution at the community level depended on local species composition. The net contribution of bioturbation to the establishment of sediment mixing depths varied across sites depending on the presence of structuring vegetation, sediment granulometry and compaction. The effects of vegetation on sediment mixing were previously unreported. These findings indicate that the species composition of invaded communities, and the habitat characteristics of invaded systems, are important modulators of the impacts of introduced species on ecosystem functioning. A framework that encompasses these aspects for the prediction of the functional impacts of invasive ecosystem engineers is suggested, supporting a multi-site approach to invasive ecology studies concerned with ecosystem functioning.  相似文献   

3.
Progress in the study of ecosystem impacts of invasive species can be facilitated by moving from the evaluation of invasive species impacts on particular processes to the analysis of their overall effects on ecosystem functioning. Here we propose an integrative ecosystem-based approach to the analysis of invasive species impacts that is based on an understanding of the general mechanistic links between biotic factors, abiotic factors, and processes in ecosystems. Two general kinds of biotic mediation – direct and indirect – and two general mechanisms of invasive species impact – assimilatory–dissimilatory (uptake and release of energy and materials) and physical ecosystem engineering (physical environmental modification by organisms) – are most relevant. By combining the biotic mediation pathways and the general mechanisms, four general situations emerge that characterize a great many of the impacts invasive species can have on ecosystem processes. We propose ways to integrate these distinctive impacts into general mechanistic representations that link ecosystem processes with changes in biotic and abiotic states (changes in structure, composition, amount, process rates, etc.). In turn, these help generate predictions about the interplay of invasive species and other drivers of ecosystem processes that are of particular relevance to ecosystems where invasive species co-occur with other anthropogenic impacts.  相似文献   

4.
Understanding processes that determine biodiversity is a fundamental challenge in ecology. At the landscape scale, physical alteration of ecosystems by organisms, called ecosystem engineering, enhances biodiversity worldwide by increasing heterogeneity in resource conditions and enhancing species coexistence across engineered and non‐engineered habitats. Engineering–diversity relationships can vary along environmental gradients due to changes in the amount of physical structuring created by ecosystem engineering, but it is unclear how this variation is influenced by the responsiveness of non‐structural abiotic properties to engineering. Here we show that environmental gradients determine the capacity for engineering to alter resource availability and species diversity, independent of the magnitude of structural change produced by engineering. We created an experimental rainfall gradient in an arid grassland where rodents restructure soils by constructing large, long‐lasting burrows. We found that greater rainfall increased water availability and productivity in both burrow and inter‐burrow habitats, causing a decline in local (alpha) plant diversity within both of these habitats. However, increased rainfall also resulted in greater differences in soil resources between burrow and inter‐burrow habitats, which increased species turnover (beta diversity) across habitats and stabilized landscape‐level (gamma) diversity. These responses occurred regardless of rodent presence and without changes in the extent of physical alteration of soils by rodents. Our results suggest that environmental gradients can influence the effects of ecosystem engineering in maintaining biodiversity via resource heterogeneity and species turnover. In an era of rapid environmental change, accounting for this interaction may be critical to conservation and management.  相似文献   

5.
Mollusk shells are abundant, persistent, ubiquitous physical structures in aquatic habitats. Using an ecosystem engineering perspective, we identify general roles of mollusk shell production in aquatic ecosystems. Shells are substrata for attachment of epibionts, provide refuges from predation, physical or physiological stress, and control transport of solutes and particles in the benthic environment. Changes in availability of these resources caused by shell production have important consequences for other organisms. Colonization of shelled habitat depends on individual shell traits and spatial arrangement of shells, which determine access of organisms to resources and the degree to which biotic or abiotic forces are modulated. Shell production will increase species richness at the landscape level if shells create resources that are not otherwise available and species are present that use these resources. Changes in the availability of resources caused by shells and the resulting effects on other organisms have both positive and negative feedbacks to these engineers. Positive feedbacks appear to be most frequently mediated by changes in resource availability, whereas negative feedbacks appear to be most frequently mediated by organisms. Given the diversity of species that depend upon resources controlled by shells and rapid changes in global shell production that are occurring due to human activities, we suggest that shell producers should not be neglected as a targets of conservation, restoration and habitat management.  相似文献   

6.
Urbanization is increasing worldwide, fragmenting, isolating or destroying native habitats with a subsequent loss of biodiversity, structural and compositional changes of biotic communities and weakening of the functioning of biological processes and ecosystem services. In urban ecosystems, terrestrial mammals provide important functions and services, but we do not have a synthesis of the impacts of urbanization on terrestrial mammals. Terrestrial mammals are vulnerable to habitat loss and modification caused by urbanization, thus we hypothesised that the abundance and diversity of mammals would decrease as urbanization progresses. In addition, due to the declining number of predators and thus to decreasing predation pressure in urban habitats, we assumed that herbivore and omnivore mammals would gain dominance. To clarify the inconsistency of previous urbanization studies on terrestrial mammals, we synthetized and re-evaluated published results by meta-analysis. Based on 50 rural-urban comparisons, terrestrial mammals were not significantly more abundant or diverse in rural than urban habitats. This was not only found at the community level, but also at the level of taxonomic groups (carnivores, marsupials, rodents), feeding habit (carnivorous, herbivorous or omnivorous species) or at the level of their interactions. Our results suggest that the studied urban-dwelling mammal species are probably well adapted to environmental conditions and pressures accompanied by urbanization via individual-level adaptation.  相似文献   

7.
Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore, biodiversity need not be decreased by invasive engineers and may even increase. On a global scale, invasive engineers may cause shore biota to converge, especially visually due to the presence of epibenthic structures.  相似文献   

8.
Bollens  Stephen M.  Cordell  Jeffery R.  Avent  Sean  Hooff  Rian 《Hydrobiologia》2002,480(1-3):87-110
Invasions of aquatic habitats by non-indigenous species (NIS), including zooplankton, are occurring at an alarming rate and are causing global concern. Although hundreds of such invasions have now been documented, surprisingly little is known about the basic biology and ecology of these invaders in their new habitats. Here we provide an overview of the published literature on NIS zooplankton, separated by life history (holoplankton vs. meroplankton), habitat (marine, estuarine, freshwater), and biological level of organization or topic (e.g. distribution and range extension, physiology, behavior, feeding, community impacts, ecosystem dynamics, etc). Amongst the many findings generated by our literature search, perhaps the most striking is the paucity of studies on community and ecosystem level impacts of NIS zooplankton, especially in marine and estuarine systems. We also present some results from two ongoing studies of invasive zooplankton in the northeast Pacific Ocean – Pseudodiaptomus inopinus in Washington and Oregon coastal estuaries, and Tortanus dextrilobatus in San Francisco Bay. Both of these Asian copepods have recently expanded their range and can at times be extremely abundant (103 m–3). We also examine some aspects of the trophic (predator–prey) ecology of these two invasive copepods, and find that they are likely to be important in the flow of material and energy in the systems in which they now pervade, although their impacts at the ecosystem level remain to be quantified. Finally, the findings of both our literature search and our two case studies of invasive zooplankton lead us to make several recommendations for future research.  相似文献   

9.
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta‐analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.  相似文献   

10.
Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.Contribution Number 2293, Bodega Marine Laboratory, University of California at Davis.  相似文献   

11.
“海洋生态系统工程师”是能够塑造栖息地并使其他海洋生物受益的海洋生物种类。海洋中的植物、动物和微生物中均存在为其他生物种类塑造栖息地的“海洋生态系统工程师”,它们的生态作用是其发挥生态功能的基础。本文基于国内外相关文献,系统阐述了“海洋生态系统工程师”生态作用的相关研究进展,并对今后的主要研究方向和内容提出建议。“海洋生态系统工程师”能够在特定的海洋环境中发挥积极作用,但一旦成为入侵种可能会对入侵海域产生负面影响;有些“海洋生态系统工程师”在发挥积极作用的同时也会在不同程度上带来负面影响。今后,应加强海洋生物床、海洋生物礁、海洋生物膜和复合生态系统工程等研究,有效利用“海洋生态系统工程师”的积极作用并防控其负面影响,实现对海洋的综合开发利用和保护。  相似文献   

12.
A shift from traditional engineering approaches to ecologically-based techniques will require changing societal values regarding ‘how and what’ is defined as engineering and design. Non-human species offer many ecological engineering examples that are often beneficial to ecosystem function and other biota. For example, organisms known as ‘ecosystem engineers’ build, modify, and destroy habitat in their quest for food and survival. Similarly, ‘keystone species’ have greater impacts on community or ecosystem function than would be predicted from their abundance. The capacity of these types of organisms to affect ecosystems is great. They exert controlling influences over ecosystems and communities by altering resource allocation, creating habitats and modifying relative competitive advantages.Species’ effects in ecosystems, although context-dependent, can be evaluated as ‘beneficial’ or ‘detrimental’. The evaluation depends on whether effects on other species or ecosystem function are more or less desirable from a given perspective. Organisms with beneficial impacts facilitate the presence of other species, employ efficient nutrient cycling, and are sometimes characterized by specific mutualisms. In contrast, many cases of detrimental engineering are found from introduced (i.e., exotic) species and are characterized by a loss of species richness, a lack of nutrient retention and the degradation of ecosystem integrity. Species’ impacts on ecosystems and community traits have been quantified in ecological studies and can be used similarly to understand, design and model human engineering structures and impacts on the landscape. Emulation of species with beneficial impacts on ecosystems can provide powerful guidance to the goals of ecological engineering. Using role model organisms that have desirable effects on species diversity and ecosystem function will be important in developing alternatives to traditional engineering practices.  相似文献   

13.
The invasion of non-indigenous plants is considered one of the primary threats to rare and endangered species as well as to the integrity and function of North American ecosystems. However, many of the suspected negative ecosystem impacts are based on anecdotal evidence. For example, there is almost unanimous agreement among natural resource managers of the detrimental ecological impacts of species such as Lythrum salicaria (purple loosestrife), Phragmites australis (common reed) and Alliaria petiolata (garlic mustard) but convincing documentation is scarce. Experimental and theoretical ecology predicts large ecosystem impacts of the most widespread invasive species. However, it is difficult to prioritize control of species that occur at intermediate densities. Long-term monitoring before and during the invasion as well as before, during and after any control attempts can provide valuable ecological information. In particular, it is important to understand how changes in the abundance of species influence ecosystem properties and processes which, in turn, will help guide management decisions. Ideally, this monitoring has to go beyond 'simple impacts on plant communities, involve cross-disciplinary teams of scientists and should incorporate many different taxa and their interactions. Monitoring design and data collection should be sophisticated enough to allow statistically sound data analysis. The available information will be paramount in (1) developing new political and scientific guidelines in invasive species management, (2) helping resolve potential conflicts of interest and (3) helping change public attitudes regarding growth, sale, and control of non-indigenous species.  相似文献   

14.
Human transformations of the Wadden Sea ecosystem through time: a synthesis   总被引:3,自引:3,他引:0  
Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the Wadden Sea. We then discuss the ecosystem and societal consequences of observed changes, and conclude with management implications. Human influences have intensified and multiplied over time. Large-scale habitat transformation over the last 1,000 years has eliminated diverse terrestrial, freshwater, brackish and marine habitats. Intensive exploitation of everything from oysters to whales has depleted most large predators and habitat-building species since medieval times. In the twentieth century, pollution, eutrophication, species invasions and, presumably, climate change have had marked impacts on the Wadden Sea flora and fauna. Yet habitat loss and overexploitation were the two main causes for the extinction or severe depletion of 144 species (~20% of total macrobiota). The loss of biodiversity, large predators, special habitats, filter and storage capacity, and degradation in water quality have led to a simplification and homogenisation of the food web structure and ecosystem functioning that has affected the Wadden Sea ecosystem and coastal societies alike. Recent conservation efforts have reversed some negative trends by enabling some birds and mammals to recover and by creating new economic options for society. The Wadden Sea history provides a unique long-term perspective on ecological change, new objectives for conservation, restoration and management, and an ecological baseline that allows us to envision a rich, productive and diverse Wadden Sea ecosystem and coastal society.  相似文献   

15.
Jeffrey A. Crooks 《Oikos》2002,97(2):153-166
Invasions by exotic species represent both threats to ecosystems as well as opportunities to learn more about them. Among the invaders that will have the largest impacts are those that directly modify ecosystems and thus have cascading effects for resident biota. Exotics can affect ecosystems by altering system-level flows, availability, or quality of nutrients, food, and physical resources (e.g. living space, water, heat or light). The invader-mediated control of physical resources, typically achieved through the modification of habitats, has received limited attention in invasion biology. This reflects a general trend in ecology, and only recently has the concept of ecosystem engineering been developed to account for the role of species that shape habitats. Plants and animals in terrestrial and aquatic systems can both create and destroy structure. When introduced into ecosystems, these exotic engineers cause physical state changes with effects that ramify throughout the system. Although the consequences of these modifications are varied and complex, insight gained from general ecological principles offers an opportunity to predict what invaders will do upon their integration into systems. Examples from the literature suggest that introduced ecosystem engineers that increase habitat complexity or heterogeneity tend to cause abundances and/or species richness to rise, while those that decrease complexity tend to have the reverse effect. In assessing such patterns, however, it is critical to also consider spatial scales and the life habits of resident organisms. In addition to providing predictive power, recognition of engineering as a major means by which invasive species affect ecosystems provides a unifying theme for invasion biology and offers a chance to consider more fully the general role of species in ecosystems.  相似文献   

16.
Anderson CB  Rosemond AD 《Oecologia》2007,154(1):141-153
Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
This study is a first attempt at a holistic economic evaluation of South African endeavours to manage invasive alien plants using biological control. Our focus was on the delivery of ecosystem services from habitats that are invaded by groups of weeds, rather than by each individual weed species. We established the net present value of the weed biological control efforts, and derived benefit:cost ratios by comparing this value (a cost) to the estimated value of ecosystem services protected by weed biological control. We identified four major functional groupings of invading alien plants, and assessed their impact on water resources, grazing and biodiversity. We estimated the area that remained free of invasions due to all historic control efforts in South Africa, and the proportion that remained free of invasion as a result of biological control (which was initiated in 1913). The estimated value of potential ecosystem services amounted to 152 billion South African rands (ZAR—presently, about US$ 19.7 billion) annually. Although an estimated ZAR 6.5 billion was lost every year due to invading alien plants, this would have amounted to an estimated additional ZAR 41.7 billion had no control been carried out, and 5–75% of this protection was due to biological control. The benefit:cost ratios ranged from 50:1 for invasive sub-tropical shrubs to 3,726:1 for invasive Australian trees. Benefit:cost ratios remained positive and our conclusion, that biological control has brought about a considerable level of protection of ecosystem services, remains robust even when our estimates of the economic impacts of key variables (i.e. sensitivity analyses of indeterminate variables) were substantially reduced.  相似文献   

18.
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.  相似文献   

19.
Are aliens threatening European aquatic coastal ecosystems?   总被引:2,自引:2,他引:0  
Inshore waters of European coasts have accumulated a high share of non-indigenous species, where a changeable palaeoenvironment has caused low diversity in indigenous biota. Also strongly transformed modern coastal ecosystems seem to assimilate whatever species have been introduced and tolerate the physical regime. Adding non-native species does not have any directional predetermined effects on recipient coastal ecosystems. The status of being a non-native rather refers to a position in evolutionary history than qualify as an ecological category with distinct and consistent properties. Effects of invaders vary between habitats and with the phase of invasion and also with shifting ambient conditions. Although aliens accelerate change in European coastal biota, we found no evidence that they generally impair biodiversity and ecosystem functioning. More often, invaders expand ecosystem functioning by adding new ecological traits, intensifying existing ones and increasing functional redundancy.  相似文献   

20.
The Great Lakes ecosystem is home to at least 139 non-indigenous species of fauna and flora which have become established following invasions or intentional introductions. About ten percent of the exotic species have caused economic or ecological damage to the system. A sample of this group is reviewed to determine if ecological concepts are useful in helping to predict colonization and impacts to ecosystem health. Successful colonization by most of the species reviewed was predictable from habitat requirements and behaviour. Ecosystem disturbance was a factor in the success of some of the colonists but was not an overriding ecological requirement. Perturbations to ecosystem health are more difficult to predict and in most cases were not readily apparent from knowledge about the ecology of invaders or native communities. The main damage to ecosystem health by the species reviewed resulted from competition, predation and habitat modification. Difficulties in predicting both invasions and damage from successful colonists point to the need to prevent non-indigenous species from reaching the Great Lakes basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号