首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a pyrimidine/purine-biased stretch which has the potential to form an unusual triplex DNA structure on gene expression has been analyzed by measuring the activity of beta-lactamase as a reporter gene in recombinant plasmids. The Escherichia coli transformant carrying the plasmid p7ERS which has a potential triplex DNA region expressed about twofold more beta-lactamase activity than that carrying the plasmid pUC19. Since the expression of beta-lactamase has been shown to be affected by template topology in vitro, this in vivo observation suggests that the inserted pyrimidine/purine-biased stretch modulates the topology of flanking regions by forming unusual DNA structure to keep the template at the superhelicity favorable for the expression of beta-lactamase.  相似文献   

2.
We report here the direct evidence for the formation of alternative DNA structures in a plasmid DNA, termed pTIR10, containing a 0.23-kb pyrimidine/purine-biased (Pyr/Pur) stretch isolated from the rat genome. Long Pyr/Pur sequences are abundant in eukaryotic genomes, and they may modulate the biological activity of genes and genomes via formation of various types of triplex-related structures. The plasmid DNA in sodium acetate buffer (pH 4.35) was deposited on APS-modified mica, and after drying it was imaged with an atomic force microscope in air. Various types of thick protrusions have been observed on pTIR10 DNA. Structural parameters (width and height) of DNA molecules suggest that the alternative structures observed here are variations on the theme of an intramolecular triplex. The biological relevance of the structural features within Pyr/Pur stretches is discussed.  相似文献   

3.
DNA in dormant spores of Bacillus species is in an A-like conformation   总被引:7,自引:0,他引:7  
The DNA in dormant spores of Bacillus species is associated with alpha/beta-type small, acid-soluble proteins (SASP), which are double-stranded DNA-binding proteins whose amino acid sequence has been highly conserved in evolution. In vitro these proteins bind most strongly to DNA which readily adopts an A-like conformation, as binding of alpha/beta-type SASP causes DNA to assume an A-like conformation. As predicted by this conformational change in DNA, binding of alpha/beta-type SASP to relaxed but covalently closed plasmid DNA results in the introduction of a large number of negative supercoils. Associated with the conformational change in DNA brought about by alpha/beta-type SASP binding is a change in its photochemistry such that ultraviolet irradiation does not generate pyrimidine dimers, but rather a thyminyl-thymine adduct termed spore photoproduct (SP). The latter two properties of DNA complexed with alpha/beta-type SASP in vitro are similar to those of DNA in dormant spores of Bacillus species in which: (i) plasmid DNA has a much higher number of negative supercoils than plasmid in growing cells; and (ii) ultraviolet irradiation produces SP and no pyrimidine dimers, while only pyrimidine dimers are formed in growing cells. During sporulation these changes in the properties of spore DNA take place in parallel with synthesis of alpha/beta-type SASP, and the magnitude of the changes is greatly reduced in mutants that make low amounts of these proteins. A straightforward interpretation of these data is that DNA in dormant spores of Bacillus species is in an A-like conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have used in vitro DNA replication systems from human HeLa cells and monkey CV-1 cells to replicate a UV-damaged simian virus 40-based shuttle vector plasmid, pZ189. We found that replication of the plasmid was inhibited in a UV fluence-dependent manner, but even at UV fluences which caused damage to essentially all of the plasmid molecules some molecules became completely replicated. This replication was accompanied by an increase (up to 15-fold) in the frequency of mutations detected in the supF gene of the plasmid. These mutations were predominantly G:C-->A:T transitions similar to those observed in vivo. Treatment of the UV-irradiated plasmid DNA with Escherichia coli photolyase to reverse pyrimidine cyclobutane dimers (the predominant UV-induced photoproduct) before replication prevented the UV-induced inhibition of replication and reduced the frequency of mutations in supF to background levels. Therefore, the presence of pyrimidine cyclobutane dimers in the plasmid template appears to be responsible for both inhibition of replication and mutation induction. Further analysis of the replication of the UV-damaged plasmid revealed that closed circular replication products were sensitive to T4 endonuclease V (a pyrimidine cyclobutane dimer-specific endonuclease) and that this sensitivity was abolished by treatment of the replicated DNA with E. coli photolyase after replication but before T4 endonuclease treatment. These results demonstrate that these closed circular replication products contain pyrimidine cyclobutane dimers. Density labeling experiments revealed that the majority of plasmid DNA synthesized in vitro in the presence of bromodeoxyuridine triphosphate was hybrid density whether or not the plasmid was treated with UV radiation before replication; therefore, replication of UV-damaged templates appears to occur by the normal semiconservative mechanism. All of these data suggest that replication of UV-damaged templates occurs in vitro as it does in vivo and that this replication results in mutation fixation.  相似文献   

5.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

6.
The specific recognition of homopurine–homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.  相似文献   

7.
《Gene》1988,74(1):77-81
Bacillus subtilis Marburg strain displays DNA methyltransferase activity. This enzyme, M·BsuM, methylates cytosine in the sequence 5'-YTCGAR-3′ (Y = pyrimidine; R = purine). M·BsuM was purified from the exponentially growing cells of B. subtilis 168M. This enzyme (45 ± 1kDa) is monomeric and recognizes only double-stranded DNA. It is inhibited partially by Mg2+, Mn2+ ions and spermidine and almost totally by sodium dodecyl sulfate, urea and agarose. This enzyme methylates specifically the three methylatable sites of the plasmid pBM3. Relaxation of specificity (‘star’ activity) was observed in the presence of organic solvents. A very low amount of M·BsuM was obtained in the standard Marburg strain. To obtain sufficient enzyme attempts are being made to clone the M·BsuM gene in Escherichia coli by using a constructed plasmid (pBM14) vector. Only one transformant containing a 3-kb insert and showing a low level of expression, was obtained.  相似文献   

8.
Chromosomeless “minicells” are formed by misplaced cell fissions near the polar extremities of an Escherichia coli K-12 mutant strain. Resistance (R)-factor deoxyribonucleic acid (DNA) can be introduced into minicells by segregation from an R+ (R64-11) derivative of the original mutant. We have assessed the ability of R+ minicells to correct defects produced in their plasmid DNA by ultraviolet (UV) and gamma radiations. Minicells harboring plasmid DNA, in comparison with their repair-proficient minicell-producing parents, possess (i) an equal competence to rejoin single-strand breaks induced in DNA by gamma rays, (ii) a reduced capacity for the photoenzymatic repair of UV-induced pyrimidine dimers, and (iii) a total inability to excise dimers, apparently owing to a deficiency in UV-specific endonuclease activity responsible for mediating the initial incision step in excision repair. Assuming that the DNA repair properties of R+ minicells reflect the concentration of repair enzymes located in the plasmid-containing polar caps of entire cells, these findings suggest that: (i) the enzymes responsible for rejoining single-strand breaks are distributed throughout the cell; (ii) photoreactivating enzyme molecules tend to be concentrated near bacterial DNA and to a lesser extent near plasmid DNA; and (iii) UV-specific endonuclease molecules are primarily confined to the central region of the E. coli cell and, thus, seldom segregate with R-factor DNA into minicells.  相似文献   

9.
The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level.  相似文献   

10.
In this study, a novel approach to the analysis of DNA repair in Escherichia coli was employed which allowed the first direct determination of the mechanisms by which endogenous DNA repair enzymes encounter target sites in vivo. An in vivo plasmid DNA repair analysis was employed to discriminate between two possible mechanisms of target site location: a processive DNA scanning mechanism or a distributive random diffusion mechanism. The results demonstrate that photolyase acts by a distributive mechanism within E. coli. In contrast, UvrABC-initiated excision repair occurs by a limited processive DNA scanning mechanism. A majority of the dimer sites on a given plasmid molecule were repaired prior to the dissociation of the UvrABC complex. Furthermore, plasmid DNA repair catalyzed by the UvrABC complex occurs without a detectable accumulation of nicked plasmid intermediates despite the fact that the UvrABC complex generates dual incisions in the DNA at the site of a pyrimidine dimer. Therefore, the binding or assembly of the UvrABC complex on DNA at the site of a pyrimidine dimer represents the rate-limiting step in the overall process of UvrABC-initiated excision repair in vivo.  相似文献   

11.
Summary The repair of UV-irradiated DNA of plasmid pBB29 was studied in an incision-defective rad3-2 strain of Saccharomyces cerevisiae and in a uvrA6 strain of Escherichia coli by the measurement of cell transformation. Plasmid pBB29 used in these experiments contained as markers the DNA of nuclear yeast gene LEU-2 and DNA of the bacterial plasmid pBR327 with resistance to Tet and Amp enabling simultaneous screening of transformant cells in both microorganisms.We found that the yeast rad3-2 mutant, deficient in incision of UV-induced pyrimidine dimers in nuclear DNA, was fully capable of repairing such lessions in plasmid DNA. The repair efficiency was comparable to that of the wild-type cells. The E. coli uvrA6 mutant, deficient in a specific nuclease for pyrimidine dimer excision from chromosomal DNA, was unable to repair UV-damaged plasmid DNA. The difference in repair capacity between the uvrA6 mutant strain and the wild-type strain was of several thousand-fold.It seems that the rad3 mutation, which confers deficiency in the DNA excision-repair system in yeast, is limited only to the nuclear DNA.  相似文献   

12.
The effects of short wave ultraviolet (UV)-induced DNA lesions on the catalytic activity of Drosophila melanogaster topoisomerase II were investigated. The presence of these photoproducts impaired the enzyme's ability to relax negatively supercoiled pBR322 plasmid molecules. As determined by DNA photolyase-catalyzed photoreactivation experiments, enzyme inhibition was due to the presence of cyclobutane pyrimidine dimers in the DNA. When 10-20 cyclobutane dimers were present per plasmid, the initial velocity of topoisomerase II-catalyzed DNA relaxation was inhibited approximately 50%. Decreased relaxation activity correlated with an inhibition of the DNA strand passage step of the enzyme's catalytic cycle. In contrast, UV-induced photoproducts did not alter the prestrand passage DNA cleavage/religation equilibrium of topoisomerase II either in the absence or presence of antineoplastic agents. Results of the present study demonstrate that the repair of cyclobutane pyrimidine dimers is important for the efficient catalytic function of topoisomerase II.  相似文献   

13.
A new broad-host-range plasmid, pSL1211, was constructed for the over-expression of genes in Synechocystis sp. strain PCC 6803. The plasmid was derived from RSF1010 and an Escherichia coli over-expression plasmid, pTrcHisC. Over-expressed protein is made with a removable N-terminal histidine tag. The plasmid was used to over-express the phrA gene and purify the gene product from Synechocystis sp. strain PCC 6803. PhrA is the major ultraviolet-light-resistant factor in the cyanobacterium. The purified PhrA protein exhibited an optical absorption spectrum similar to that of the cyclobutane pyrimidine dimer (CPD) DNA photolyase from Synechocuccus sp. strain PCC 6301 (Anacystis nidulans). Mass spectrometry analysis of PhrA indicated that the protein contains 8-hydroxy-5-deazariboflavin and flavin adenine dinucleotide (FADH2) as cofactors. PhrA repairs only cyclobutane pyrimidine dimer but not pyrimidine (6-4) pyrimidinone photoproducts. On the basis of these results, the PhrA protein is classified as a class I, HDF-type, CPD DNA photolyase.  相似文献   

14.
R D Wood 《Biochemistry》1989,28(21):8287-8292
A newly developed method allows human cell extracts to carry out repair synthesis on ultraviolet light irradiated closed circular plasmid DNA [Wood, R. D., Robins, P., & Lindahl, T. (1988) Cell 53, 97-106]. The identity of the photodamage that leads to this repair replication was investigated. Removal of stable pyrimidine hydrates from irradiated plasmid pAT153 did not significantly affect the amount of repair replication in the fluence range of 0-450 J/m2, because of the low yield of these products and their short DNA repair patch size. Photoreactivation of irradiated DNA using purified Escherichia coli DNA photolyase to remove more than 95% of the cyclobutane dimers from the DNA reduced the observed repair synthesis by 20-40%. The greater part of the repair synthesis is highly likely to be caused by (6-4) pyrimidine dimer photoproducts. This class of lesions is rapidly repaired by mammalian cells, and their removal is known to be important for cell survival after ultraviolet irradiation.  相似文献   

15.
In this paper we describe the new selection/counterselection vector pCS1966, which is suitable for both sequence-specific integration based on homologous recombination and integration in a bacteriophage attachment site. This plasmid harbors oroP, which encodes a dedicated orotate transporter, and can replicate only in Escherichia coli. Selection for integration is performed primarily by resistance to erythromycin; alternatively, the ability to utilize orotate as a pyrimidine source in a pyrimidine auxotrophic mutant could be utilized. Besides allowing the cell to utilize orotate, the transporter renders the cell sensitive to 5-fluoroorotate. This sensitivity is used to select for loss of the plasmid. When expressed from its own promoter, oroP was toxic to E. coli, whereas in Lactococcus lactis the level of expression of oroP from a chromosomal copy was too low to confer 5-fluoroorotate sensitivity. In order to obtain a plasmid that confers 5-fluoroorotate sensitivity when it is integrated into the chromosome of L. lactis and at the same time can be stably maintained in E. coli, the expression of the oroP gene was controlled from a synthetic promoter conferring these traits. To demonstrate its use, a number of L. lactis strains expressing triosephosphate isomerase (tpiA) at different levels were constructed.  相似文献   

16.
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.  相似文献   

17.
Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have been identified and characterized in Escherichia coli, yeast and humans. So far, little is known about how hyperthermophilic Archaea cope with such pyrimidine damage. Here we report characterization of an endonuclease III homolog, PaNth, from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100°C. The predicted product of 223 amino acids shares significant sequence homology with several [4Fe-4S]-containing DNA N-glycosylases including E.coli endonuclease III (EcNth). The histidine-tagged recombinant protein was expressed in E.coli and purified. Under optimal conditions of 80–160 mM NaCl and 70°C, PaNth displays DNA glycosylase/β-lyase activity with the modified pyrimidine base 5,6-dihydrothymine (DHT). This activity is enhanced when DHT is paired with G. Our data, showing the structural and functional similarity between PaNth and EcNth, suggests that BER of modified pyrimidines may be a conserved repair mechanism in Archaea. Conserved amino acid residues are identified for five subfamilies of endonuclease III/UV endonuclease homologs clustered by phylogenetic analysis.  相似文献   

18.
Abstract

The energetics of the B-Z transition of two different types of cloned alternating purine/pyrimidine DNA sequences have been analysed by a two dimensional electrophoretic technique. Since the transition between right handed and left handed forms of these polymers is detected by alterations of electrophoretic mobilities of topoisomers of the plasmid DNA molecules, the method is not dependent on Z-DNA binding ligands. The measurements reflect intrinsic properties of the DNA unperturbed by the free energy of binding such a ligand.

Direct evidence from the analysis of topoisomer distributions is presented which shows that d(GC)n.d(GC)n sequence elements within an E. coli plasmid will adopt a Z conformation in-vivo under conditions of blocked protein synthesis. Evidence for the in-vivo occurrence of Z-DNA was not detected in plasmid DNA isolated from bacterial cells growing in the absence of protein synthesis inhibitors.

A model is proposed for a function for the B-Z transition in ensuring the correct pairing of homologous chromosomes during meiosis.  相似文献   

19.
Although neither rifampicin nor spectinomycin had any effect on the frequency of Flac transfer by a sensitive donor, rifampicin but not spectinomycin prevented donor conjugal DNA synthesis as measured in matings between a dnaB donor and a tdk recipient. An untranslated RNA species is therefore probably required for this synthesis, although transfer took place even in its absence. Donor conjugal DNA synthesis was abolished in a dnaE donor, showing that DNA polymerase III is responsible for this process; again, plasmid DNA transfer was not affected.Flac mutants lacking the F pilus gave neither donor conjugal DNA synthesis nor plasmid DNA transfer, probably because they could not receive a “mating signal” to activate the transfer process. The products of traI and traM were also required both for donor conjugal DNA synthesis and for physical transfer of plasmid DNA, probably being involved in the conversion of covalently closed circular plasmid DNA into the open circular form that is the substrate for the independent although normally simultaneous synthesis and transfer steps. In contrast, donor conjugal DNA synthesis took place at a normal rate in both piliated traG and traN mutants, and at a reduced rate in traD mutants, although in no case was there physical transfer of plasmid DNA. These gene products are therefore required for DNA transfer to the recipient, and in addition, the absence of the traD product may hinder DNA synthesis.Based upon these results, a scheme for the processing of DNA during conjugation is presented.  相似文献   

20.
《Free radical research》2013,47(3):266-275
Abstract

Cholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) after the incubation of 2′-deoxyguanosine (dGuo) with ChOOH and Cu2+. In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号