首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cDNA clones representing mRNAs, highly expressed in pea root tips, were isolated by mRNA differential display. Ribonuclease protection analyses showed different patterns of expression of these two messages in several pea tissues. Sequence analysis showed that the first clone, PsH1b-40, has 100% homology with a previously isolated H1 histone cDNA, PsH1b. However, it has an additional 30 nt at the 3 end which is absent in PsH1b, suggesting possible multiple polyadenylation sites in the same mRNA. The second clone, PsH1b-41, encodes a deduced 19.5 kDa protein of 185 amino acids with an isoelectric point of 11.5. The putative globular domain of the encoded protein showed 67–71% residue identity with globular domains of 28 kDa pea PsH1b H1 histone and Arabidopsis thaliana H1-1 H1 histone. It has 9 repeating motifs of (T/S)XXK. In the C-terminal domain, there are four lysine-rich repeating motifs of SXK(T/S)PXKKXK which may be involved in chromatin condensation and decondensation. Southern blot analysis of nuclear DNA shows that PsH1-41 belongs to a multigene family.  相似文献   

2.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   

3.
4.
5.
Explants fromPisum sativum shoot cultures and epicotyls were transformed by cocultivation withAgrobacterium tumefaciens vectors carrying plant selectable markers and transformants could be selected on a medium containing kanamycin. Transformants could also be obtained at a low frequency by cocultivating small protoplast-derived colonies. The transformed nature of the calli obtained from selection was confirmed by opine assay and DNA analysis. In addition five cultivars of pea were tested for their response to seven differentAgrobacterium tumefaciens strains. The response pattern coincided largely between the different pea cultivars, being more dependent on the bacterial strain than the cultivar used.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - Km kanamycin - NAA -naphthaleneacetic acid - NOS nopaline synthase - NPT neomycin phosphotransferase - OCS octopine synthase  相似文献   

6.
Some esterases of the pea (Pisum sativum L.)   总被引:2,自引:0,他引:2  
  相似文献   

7.
Using low concentrations of picloram (0.06 mg/l), embryoids were formed on the surface of leaf-derived callus of pea, Pisum sativum L. (c.v. Dippes Gelbe Victoria) upon transfer to liquid medium. After some days in culture, embryoids spontaneously separated from the calli, and developed into torpedo-shaped embryos, which were transferred to solid medium. In a second series of experiments, embryos were also formed by mutant 489C and a genetic line of Pisum arvense, which additionally exhibited embryogenesis also from epicotyl-derived callus. Some of the embryos showed root formation, but no shoot morphogenesis occurred. In a limited number of cases, an additional root was formed in the apparent shoot apical region after 2–5 days.  相似文献   

8.
Analysis with the polymerase chain reaction showed that the Khlorofill-4 pea Pisum sativum chlorophyll-deficient mutant with reduced stipules has an altered structure of the COCHLEATA (COCH) gene, carrying a new mutant COCH allele. The phenotype of the mutant was described in comparison with another form having reduced stipules (stipules reduced) and the control. Leaves of the coch mutant are smaller and have other proportions than in the control; stipules are absent from leaves of the first nodes and are narrow, bandlike, or spoonlike at later ontogenetic stages. It was concluded that the cell number in the stipule epidermis is reduced in the st and coch mutants compared to the wild type.  相似文献   

9.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

10.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

11.
Summary Polyclonal antibodies against a part of pea (Pisum sativum L.) LOXG protein have been raised to study the pattern of distribution of related lipoxygenases in pea carpels. The antiserum recognized three lipoxygenase polypeptides in carpels. One of them became undetectable 24 hours after fruit development induction, suggesting that it may correspond to the protein derived from loxg cDNA. Immunolocalization experiments showed that lipoxygenase protein was present only in pod tissues: it was abundant in the mesocarp and, from the day of anthesis, in the endocarp layers. Lipoxygenase distribution is regulated throughout development. The association of lipoxygenase with cells in which processes of expansion and growth will potentially take place support a role in pod growth and development.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - IgG immunoglobulin G - GA3 gibberellic acid - LOX lipoxygenase - PAGE polyacrylamide gel - PVDF polyvinylidene difluoride - SDS sodium dodecyl sulfate - Tris 2-amino-2-hydroxymethyl-1,3-propanediol  相似文献   

12.
13.
Summary The aim of this study was to determine whether DNA variations could be detected in regenerated pea plants. Two different genotypes were analyzed by cytogenetic and molecular techniques: the Dolce Provenza cultivar and the 5075 experimental line. Dolce Provenza regenerated plants showed a reduction in DNA content, particularly at the level of unique sequences and ribosomal genes. Moreover, regeneration was associated with an increase in DNA methylation of both internal and external cytosines of the CCG sequence. On the other hand, the DNA content of the 5075 line remained stable after regeneration. DNA reduction was found only in 5075 plants regenerated from callus cultures maintained for long incubation periods (about a year). The DNA variations observed are discussed both in relation to the genotype source and the role of tissue-culture stress.  相似文献   

14.
Summary Three isoenzyme systems (amylase, esterase and glutamate oxaloacetate transaminase) were examined in seeds of pea (Pisum sativum L.) and shown to give clear variation in their band patterns on gel electrophoresis between different lines. The inheritance of these isoenzyme systems, and the location of their genes on the pea genome was investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase was found to be on chromosome 2, linked to the loci k and wb (wb ... 9 ... k ... 25 ... Amy). The gene for esterase was found to be linked with the gene Br (chromosome 4) but the exact location is uncertain because of the lack of the morphological markers involved in the cross. The gene for glutamate oxaloacetate transaminase was found to be on chromosome 1 and linked with the loci a and d (a... 24... Got... 41 ... d).  相似文献   

15.
N. Harris  R. R. D. Croy 《Planta》1985,165(4):522-526
The major albumin protein in storage parenchyma tissue of developing peas has been localised at an ultrastructural level by immunocytochemistry. Tissue was fixed in buffered aldehyde and embedded in LR White resin which was polymerised by addition of catalyst. Sections were labelled by the indirect method of absorption of Protein A-gold to specifically bound antibodies. This method gives high levels of specific labelling on sections which retain good ultrastructural preservation and have high contrast after conventional staining. The albumin is located throughout the cytoplasm although no labelling was found associated with the endoplasmic reticulum, Golgi apparatus, vacuoles-protein bodies or other organelles.Abbreviation PMA pea major albumin protein  相似文献   

16.
17.
Cell suspension cultures were established from germinating pea (Pisum sativum L.) seeds. This cell culture, which accumulated pisatin, consisted mostly of single cells containing a few cell aggregates. The cells responded to treatment with a yeast glucan preparation with transient accumulation of pisatin in both cells and culture media. Addition of pisatin to cell cultures resulted in increased synthesis of pisatin. Phenylalanine ammonia-lyase, chalcone synthase and isoflavone reductase activities were present in untreated cells. Upon treatment with an elicitor preparation the activities of the first two enzymes showed a rapid, transient increase up to 20 hours after treatment. Isoflavone reductase showed a major and minor peak at 16 and 36 h, respectively, after elicitor treatment. The time course of the enzyme activity and pisatin accumulation is consistent with an elicitor-mediated response.Abbreviations CHS chalcone synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - IFR isoflavone reductase - 2iP 6-(dimethylallylamino)-purine - MS Murashige & Skoog basal salt medium - PAL phenylalanine ammonia-lyase - PMSF phenylmethylsulfonyl fluoride - POPOP 1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2,5-diphenyloxazole  相似文献   

18.
Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3′ untranslated regions (3′-UTR). There are some similarities between the 3′-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3′-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments. Sequence data from this article were deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession Nos. Genomic sequences of pea apyrase: AB023621, AB030444, AB030445, AB038554, AB038555. cDNA sequences of pea apyrase: AB022319, AB027614, AB038668, AB038669.  相似文献   

19.
Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)   总被引:5,自引:0,他引:5  
This paper aims at providing reliable and cost effective genotyping conditions, level of polymorphism in a range of genotypes and map position of newly developed microsatellite markers in order to promote broad application of these markers as a common set for genetic studies in pea. Optimal PCR conditions were determined for 340 microsatellite markers based on amplification in eight genotypes. Levels of polymorphism were determined for 309 of these markers. Compared to data obtained for other species, levels of polymorphism detected in a panel of eight genotypes were high with a mean number of 3.8 alleles per polymorphic locus and an average PIC value of 0.62, indicating that pea represents a rather polymorphic autogamous species. One of our main objectives was to locate a maximum number of microsatellite markers on the pea genetic map. Data obtained from three different crosses were used to build a composite genetic map of 1,430 cM (Haldane) comprising 239 microsatellite markers. These include 216 anonymous SSRs developed from enriched genomic libraries and 13 SSRs located in genes. The markers are quite evenly distributed throughout the seven linkage groups of the map, with 85% of intervals between the adjacent SSR markers being smaller than 10 cM. There was a good conservation of marker order and linkage group assignment across the three populations. In conclusion, we hope this report will promote wide application of these markers and will allow information obtained by different laboratories worldwide in diverse fields of pea genetics, such as QTL mapping studies and genetic resource surveys, to be easily aligned.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
Whole plant regeneration via somatic embryogenesis was obtained in pea (Pisum sativum L.) using explants from immature embryos or shoot apex segments. The induction of somatic embryos required picloram or 2,4-D. Germination of fully-developed embryos was accomplished by subculture on medium with only cytokinin and then on medium supplemented with cytokinins in combination with a reduced auxin concentration. Plantlets obtained from both zygotic embryos and shoot apices were transferred to soil and were grown to maturity. Nine plants were examined cytologically, revealing three tetraploids (2n=4x=28) and six diploids (2n=2x=14).Abbreviations Picloram 4-amino-3,5,6-trichloropicolinic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - BA 6-benzylaminopurine - IBA indole-3-butyric acid KAES Journal Article No. 87-3-4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号