首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. coli pyruvate oxidase (pyruvate:ferricytochrome b1 oxidoreductase, EC 1.2.2.2) is a peripheral membrane flavoenzyme which has been purified to homogeneity. In vivo the oxidase resides on the inner surface of the cytoplasmic membrane and is coupled to the bacterial electron transport chain. In vitro, the purified oxidase requires lipids for full enzymatic activity. Previous studies have characterized the conformational and energetic coupling between the lipid-binding site(s) and the catalytic active site. The affinity of the enzyme for phospholipids and detergents is significantly enhanced when the flavoprotein is in the reduced form, i.e., in the presence of pyruvate and the required cofactor, thiamin pyrophosphate. The lipid-binding studies were hindered due to the complicating factor of the self-association of the substrate-reduced flavoprotein. In this paper, fluorescence techniques are employed to measure the binding of a detergent-like activator to the oxidase. The experiments are performed at much lower protein concentrations than previously employed, so that protein aggregation is not a problem. The chromophore on the activator, 2-(N-decyl)aminonaphthalene-6-sulfonic acid is effective at quenching the pyruvate oxidase intrinsic tryptophan fluorescence. Quenching titrations are used to obtain the binding isotherm. AT DNS concentrations less than 10(-5) M, the results show a larger amount of DNS binding to the reduced flavoprotein than to the oxidized form of the enzyme. This is the concentration range where DNS is an effective activator of the enzyme. This represents a class of binding sites specifically found on pyruvate oxidase and not apparent in other proteins such as lysozyme or aldolase. At the DNS concentration which is optimum for activation approx. 20 molecules of DNS are bound per enzyme tetramer in the absence of the substrate. The pyruvate-reduced form of the enzyme binds about 40--50 molecules of DNS per tetramer. Qualitatively, the results are similar to what was previously found for both sodium dodecyl sulfate and cetyl trimethylammonium bromide. However, in both these cases, the amount of bound detergent was nearly an order of magnitude less than the values obtained using DNS.  相似文献   

2.
The quaternary structures of the thiamine diphosphate-dependent enzymes transketolase (EC 2.2.1.1; from Saccharomyces cerevisiae), pyruvate oxidase (EC 1.2.3.3; from Lactobacillus plantarum), and pyruvate decarboxylase (EC 4.1.1.1; from Zymomonas mobilis and brewers' yeast, the latter in the native and pyruvamide-activated forms) were examined by synchrotron x-ray solution scattering. The experimental scattering data were compared with the curves calculated from the crystallographic models of these multisubunit enzymes. For all enzymes noted above, except the very compact pyruvate decarboxylase from Z. mobilis, there were significant differences between the experimental and calculated profiles. The changes in relative positions of the subunits in solution were determined by rigid body refinement. For pyruvate oxidase and transketolase, which have tight intersubunit contacts in the crystal, relatively small modifications of the quaternary structure (root mean square displacements of 0.23 and 0.27 nm, respectively) sufficed to fit the experimental data. For the enzymes with looser contacts (the native and activated forms of yeast pyruvate decarboxylase), large modifications of the crystallographic models (root mean square displacements of 0.58 and 1.53 nm, respectively) were required. A clear correlation was observed between the magnitude of the distortions induced by the crystal environment and the interfacial area between subunits.  相似文献   

3.
A defined bioconjugate of Aerococcus viridans L-lactate oxidase and poly(ethylene glycol) 5000 was prepared and characterized in its structural and functional properties in comparison to the unmodified enzyme. Because the L-lactate oxidase in the native form does not contain cysteines, we introduced a new site for chemical modification via thiol chemistry by substituting the presumably surface-exposed serine-218, a nonconserved residue in the amino acid sequence, with cysteine. The resulting S218C mutant was isolated from Escherichia coli and shown in kinetic assays to be similarly (i.e., about half as) active as the native enzyme, thus validating the structure-guided design of the mutation. Using maleimide-activated methoxypoly(ethylene glycol) 5000 in about 10-fold molar excess over protein, the S218C mutant was converted in high yield (94%) into PEGylated derivative, while the native enzyme was totally unreactive under equivalent conditions. PEGylation caused only a relatively small decrease (30%) in the specific activity of the S218C mutant, and it did not change the protein stability. PEGylation went along with enhancement of the apparent size of the homotetrameric L-lactate oxidase in gel permeation chromatography, from 170 kDa to 250 kDa. The protein hydrodynamic diameter determined by dynamic light scattering increased from 11.9 nm in unmodified S218C mutant to 16.4 nm in the PEGylated form. Site-selective PEGylation of the mutated L-lactate oxidase, using orthogonal maleimide-thiol coupling, could therefore facilitate incorporation of the enzyme into biosensors currently employed for determination of blood L-lactate levels, and it could also support different applications of the enzyme in applied biocatalysis.  相似文献   

4.
A new method for the automated analysis of inorganic phosphorus using immobilized enzyme was established. The method was based on the determination of hydrogen peroxide formed by the action of pyruvate oxidase on inorganic phosphate and pyruvate. Since pyruvate oxidase required inorganic phosphate for its stability and therefore had to be kept in a buffer containing inorganic phosphate, it could hardly be used as a reagent in the form of aqueous solution for the determination of inorganic phosphorus. This difficulty was overcome by using immobilized pyruvate oxidase in column form. When the present method was applied to the determination of inorganic phosphorus in serum, it gave perfect linearity of the data up to 0.20 g inorganic phosphorus/L with satisfactory precision, reproducibility, high sensitivity, and accurate recoveries. The immobilized enzyme reactor unit showed enhanced heat stability and good operational stability for a one-month period, during which time it was used over 900 times for analyses. The enzyme column was not affected by organic phosphorus compounds. The results correlated satisfactorily with those obtained by another well-established method.  相似文献   

5.
Monoclonal antibodies have been prepared against pyruvate oxidase, a flavoprotein dehydrogenase isolated from Escherichia coli. Six monoclonals were obtained, but only one was found to bind to the native form of the enzyme. This monoclonal, 1I1, was a potent inhibitor. Although this antibody inhibited the unactivated and lipid-activated forms of the enzyme, it had much less of an inhibitory effect on the protease-activated form of the enzyme, although the antibody still bound to this form. Hence, the coupling between antibody binding and the conformation at the active site can itself be modulated by the conformation of the protein.  相似文献   

6.
Summary Malate synthase was investigated by the small-angle X-ray scattering technique in aqueous solution. Measurements extending for several hours revealed a continuous increase of the intensity in the innermost portion of the scattering curve. There is clear evidence that this increase was caused by an X-ray induced aggregation of enzyme particles during the performance of the small-angle X-ray scattering experiment. The monitoring of the aggregation process in situ by means of small-angle X-ray scattering led to a model of the way how the aggregation might proceed. The analysis of the scattering curves of malate synthase taken at various stages of aggregation established the retention of the thickness factor of the native enzyme and the occurrence of one and later on of two cross-section factors. The process of aggregation was also reflected by the increase of extension of the distance distribution function. According to these results, the first step of aggregation might be a linear side-by-side association of the oblate enzyme particles, a process which is followed by a twodimensional aggregation. An aggregation in the third dimension was not observed during the time covered by our experiment. The predominance of aggregation in only one or two dimensions was corroborated by comparison of appropriate theoretical scattering curves with the experimental curves. The theoretical scattering curves for this comparison were obtained by averaging over the properly weighted scattering curves calculated for various species of hypothetical aggregates. The time dependence of the apparent mean radius of gyration was used to compare the aggregation of enzyme samples that were irradiated under different experimental conditions. It turned out that by addition of dithiothreitol to the enzyme solutions as well as in the presence of the substrates (acetyl-CoA, glyoxylate) or of a substrate analogue (pyruvate) or of ethanol the rate of aggregation is reduced. Enzymic activity was found to decrease about exponentially with increasing X-ray dose. The presence of dithiothreitol or of the substrate glyoxylate or of the substrate analogue pyruvate protects the enzyme against X-ray induced inactivation. The substrate acetyl-CoA does not exhibit a comparable protective effect against inactivation. Measurements of enzymic activity and small-angle X-ray scattering on samples, which had been X-irradiated with a defined dose prior to the measurements, established two different series of efficiency for the protection of the enzyme against aggregation (pyruvate > glyoxylate > acetyl-CoA) and inactivation (glyoxylate > pyruvate > $$ " align="middle" border="0"> acetyl-CoA). The results showed that there is no direct relation between the extent of aggregation and the loss of enzymic activity.  相似文献   

7.
Summary Enzymes may be useful as highly specific histochemical probes to identify and localize macromolecular substrates in tissue sections. We have used glucose oxidase, a double-headed enzyme, to demonstrate -glucosyl groups in paraffin sections.Native glucose oxidase has two active sites per molecule. Soluble polymers formed by glutaraldehyde combine many active binding sites on to one molecule. Some of these bind to glucose in tissue sections, leaving others free to react with chromogenic substrate. The intensity of staining is directly related to the concentration of enzyme, duration of incubation with enzyme, temperature and pH. Polymeric forms of enzyme are about 100 times more effective than native.Glucose oxidase, particularly in a polymeric form, appears a simple reagent for the identification of glucose-containing structures. The use of native and polymerized enzymes as a histochemical probe has enormous potential in the analysis of normal tissues and in the detection of aberrant carbohydrate deposition in pathological tissues; this system serves as a useful model.  相似文献   

8.
The possibility of using soluble cross-linked enzyme-albumin polymers as a means of enzyme therapy for the treatment of certain enzyme deficiency diseases is investigated. The hyperuricemic Dalmatian coach hound is used as an experimental animal and the enzyme uricase (urate oxidase) as the administered enzyme. Chemically cross-linking uricase with an excess of canine albumin yields a soluble enzyme polymer that is significantly more heat stable and resistant to proteolytic activity than the native enzyme. Intravenous administration of similar amounts of enzyme in the native or polymeric form indicated that the “solubilized” enzyme survived in the circulation for a longer period of time (clearance half-time of 26 hours as opposed to 4 hours for the native enzyme) and was more effective in lowering plasma uric acid levels for longer periods. In vivo administration of the native enzyme lowered uric acid levels by about 35% with a return to normal levels with a half-time of about 24 hours. Subsequent injections of native uricase proved less effective and produced a severe hypersensitivity reaction following the third injection. No such adverse reactions or decreased activity of the administered “solubilized” uricase-albumin polymers were observed. The plasma uric acid levels were decreased by about 40% and only after 48 hours did the substrate levels begin to rise towards their resting levels.  相似文献   

9.
The regulation of alternative oxidase activity by the effector pyruvate was investigated in soybean (Glycine max L.) mitochondria using developmental changes in roots and cotyledons to vary the respiratory capacity of the mitochondria. Rates of cyanide-insensitive oxygen uptake by soybean root mitochondria declined with seedling age. Immunologically detectable protein levels increased slightly with age, and mitochondria from younger, more active roots had less of the protein in the reduced form. Addition of pyruvate stimulated cyanide-insensitive respiration in root mitochondria, up to the same rate, regardless of seedling age. This stimulation was reversed rapidly upon removal of pyruvate, either by pelleting mitochondria (with succinate as substrate) or by adding lactate dehydrogenase with NADH as substrate. In mitochondria from cotyledons of the same seedlings, cyanide-insensitive NADH oxidation was less dependent on added pyruvate, partly due to intramitochondrial generation of pyruvate from endogenous substrates. Cyanide-insensitive oxygen uptake with succinate as substrate was greater than that with NADH, in both root and cotyledon mitochondria, but this difference became much less when an increase in external pH was used to inhibit intramitochondrial pyruvate production via malic enzyme. Malic enzyme activity in root mitochondria declined with seedling age. The results indicate that the activity of the alternative oxidase in soybean mitochondria is very dependent on the presence of pyruvate: differences in the generation of intramitochondrial pyruvate can explain differences in alternative oxidase activity between tissues and substrates, and some of the changes that occur during seedling development.  相似文献   

10.
It was shown that in the presence of ATP and Mg2+ the phosphorylation of the partially purified pyruvate dehydrogenase complex and the enzyme in isolated brain mitochondria inhibited the oxidative activity of the pyruvate dehydrogenase complex. The phosphorylation did no affect essentially the nonoxidative decarboxylation of pyruvate to form CO2 and acetaldehyde. In native mitochondria from the bovine brain the nonoxidative activity of the pyruvate dehydrogenase complex reached about 10% as compared to the oxidative activity of enzyme.  相似文献   

11.
Amplifying the cellular reduction potential of Streptococcus zooepidemicus   总被引:1,自引:0,他引:1  
The valuable pharmaceutical polymer, hyaluronic acid, is produced industrially using the gram-positive bacterium Streptococcus zooepidemicus. Synthesis of this polymer is a significant energetic burden upon the microorganism hence the native NADH oxidase gene was cloned and overexpressed to increase the energy yield of catabolism during aerobic cultivation on glucose. Elevated NADH oxidase levels led to a decline in lactic acid generation and prevented ethanol formation, leaving acetate as the main fermentation product. Biomass yield increased due to the energy gained from the formation of acetate. Evaluation of the acetate flux control coefficient over a range of NADH oxidase expression levels revealed that acetate production was sensitive to the NADH oxidase level. However, at high NADH oxidase levels, the acetate flux was mainly influenced by another factor. The concomitant excretion of pyruvate at high NADH oxidase levels suggested that the flux through the pyruvate dehydrogenase enzyme complex was limiting the conversion of pyruvate to acetate.  相似文献   

12.
Pyruvate oxidase is a flavoprotein dehydrogenase isolated from Escherichia coli which catalyzes the oxidative decarboxylation of pyruvate to acetate plus CO2. The maximal turnover of the enzyme, measured using a ferricyanide reductase assay, is increased 20-to 30-fold by either of two methods. Proteolysis in the presence of the substrate (pyruvate) and cofactor (Mg2+-thiamin pyrophosphate) results in cleavage at a single locus near the carboxyl terminus and concomitant activation. Phospholipids and detergents can bind to the enzyme and result in a similar activation, which is presumed to be physiologically relevant, since the enzyme functions as a peripheral membrane enzyme. Previous studies showed that proteolytic activation of pyruvate oxidase results in substantial changes in the absorption spectrum of the oxidized form of the bound flavin. Up to this time, similar studies of the lipid-activated form of the enzyme have not been feasible, since it is necessary to reduce the flavoprotein in order to induce binding to the lipids. In this paper, glutaraldehyde cross-linking of the lipid-activated enzyme is used to trap the enzyme in this form. Spectroscopic studies show alterations of the flavin spectrum similar to those observed upon proteolytic activation. This alteration in the flavin binding site is consistent with kinetic studies which suggest that activation results from an acceleration in the rates of electron transfer both into and out of the bound flavin, which appears to be more "accessible" in the activated forms of the enzyme.  相似文献   

13.
The apoprotein of hog kidney D-amino acid oxidase was reconstituted with 5-deazaflavin adenine dinucleotide (5-deazaFAD) to yield a protein which contains 1.5 mol of 5-deazaFAD/mol of enzyme. The deazaFAD-containing enzyme forms complexes with benzoate, 2-amino benzoate, and 4-aminobenzoate which are both qualitatively and quantitatively similar to those observed with native enzyme. The complex with 2-aminobenzoate exhibits a new long wavelength absorption band characteristic of a flavin charge-transfer complex. The reconstituted enzyme exhibits no activity when assayed by D-alanine oxidation. However, the bound chromophore can be reduced by alanine, phenylalanine, proline, methionine, and valine, but not by glutamate or aspartate, indicating the deazaFAD enzyme retains the substrate specificity of the native enzyme. Reduction of the enzyme by D-alanine exhibits a 1.6-fold deuterium isotope effect. Reoxidation of the reduced enzyme occurred in the presence of pyruvate plus ammonia, but not with pyruvate alone or ammonia alone. beta-Phenylpyruvate and alpha-ketobutyrate, but not alpha-ketoglutarate could replace pyruvate. Reduced enzyme isolated following reaction with [alpha-3H]alanine was found to contain 0.5 mol of tritium/mol of deazaFADH2. After denaturation of the tritium-labeled enzyme, the radioactivity was identified as deazaFADH2. Reaction of the reduced tritium-labeled enzyme with pyruvate plus ammonia prior to denaturation yields [alpha-3H]alanine and unlabeled deazaFAD. These results suggest that reduction and reoxidation of enzyme-bound deazaFAD involves the stereo-specific transfer of alpha-hydrogen from substrate to deazaFAD.  相似文献   

14.
Regulation of alternative oxidase activity in higher plants   总被引:10,自引:0,他引:10  
Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.  相似文献   

15.
Lactate oxidase was purified from Aerococcus viridans (A. viridans) by dye affinity chromatography and FPLC ion exchange chromatography. The lactate oxidase could be purified by comparatively simple procedures, the purification achieved from a crude extract of A. viridans was 41-fold with a specific activity of 143 units/(mg of protein). The purified enzyme was a L-lactate oxidase, which catalyses the conversion of L-lactate in the presence of molecular oxygen to pyruvate and H(2)O(2). This purified lactate oxidase showed an apparent molecular mass of 48,200 in SDS-PAGE and the native molecular weight, as estimated by FPLC gel filtration, was 187,300. This molecular weight indicates that lactate oxidase exists in tetrameric form after gel filtration. To differing degrees, all the triazine dyes tested were inhibitors of lactate oxidase, solutions of free triazine dyes showing an inhibition mechanism which was both time- and pH-dependent.  相似文献   

16.
Malate synthase from baker's yeast has been investigated in solution by the small-angle X-ray scattering technique. Size, shape and structure of the native substrate-free enzyme and of various enzyme-substrate complexes have been determined. As the enzyme was found to be rather unstable against X-rays, several precautions as well as sophisticated evaluation procedures had to be adopted to make sure that the results were not influenced by radiation damage. These included use of low primary intensity, short time of measurement, the presence of high concentrations of dithiothreitol, combined use of the conventional slit-collimation system and the new cone-collimation system. 1. For the native substrate-free enzyme the following molecular parameters could be established: radius of gyration R = 3.96 +/- 0.02 nm, maximum particle diameter D = 11.2 +/- 0.6 nm, radius of gyration of the thickness Rt = 1.04 +/- 0.04 nm, molecular weight Mr = 187000 +/- 3000, correlation volume Vc = 338 +/- 5 nm3, hydration x = 0.35 +/- 0.02 g/g, mean intersection length - l = 5.0 +/- 0.2 nm. Comparison of the experimental scattering curve with theoretical curves for various models showed that the enzyme is equivalent in scattering to an oblate ellipsoid of revolution rather than to a circular cylinder. The semiaxes of this ellipsoid are a = b = 6.06 nm and c = 2.21 nm. Thus with an axial ratio of about 1:0.36 the enzyme is of very anisometric shape. 2. Binding of the substrates (acetyl-CoA, glyoxylate) or the substrate analogue pyruvate causes slight structural changes of the enzyme. These changes are reflected mainly by a slight decrease of the radius of gyration (0.3--1.3%, as established both with the slit-smeared and the desmeared curves). Concomitantly there occurs a decrease of the maximum particle diameter and an increase of the radius of gyration of the thickness. These changes imply an increase of the axial ratio by 2.2--6.9%, i.e. substrate binding induces a decrease of anisometry. While the particle volume appears to be unchanged on binding glyoxylate or its analogue pyruvate, binding of acetyl-CoA causes slight changes of this parameter. In a similar manner the binding of acetyl-CoA leads to a slight enhancement of the molecular weight; this increase corresponds to the binding of 2.7 +/- 1 molecules of acetyl-CoA.  相似文献   

17.
The dissociation of pyruvate oxidase (PO) caused by pressure up to 220 MPa at various conditions was explored by measuring the intrinsic fluorescence spectra and polarization. At 5 degrees C and pH 7.6 the standard volume change (deltaV0) and free energy upon dissociation of the enzyme is -220 ml/mol and 29.83 kCal/mol, respectively. It was found that FAD was irreversibly removed during the pressure-dissociation of the enzyme. A much smaller standard volume change (-153 ml/mol) and lower free energy (24.92 kCal/mol) of apo-pyruvate oxidase (apo-PO) compared with the native enzyme indicated that FAD played very important role in stabilizing the enzyme and significantly influenced the standard volume change. The substrate pyruvic acid can significantly stabilize the enzyme against pressure in spite the standard volume for the enzyme in this case has a big increase relative to the native enzyme. The comparison of the intrinsic fluorescence of the native and the activated enzyme obtained by limited proteolysis indicated that the physical separation of alpha-peptide from the enzyme only occurred when the subunits were dissociated from each other under pressure.  相似文献   

18.
Pyruvate oxidase of Escherichia coli, an enzyme greatly activated by phospholipids, is a tetramer of a Mr 62,000 subunit. We have utilized the differing electrophoretic mobilities of several mutant oxidases on native polyacrylamide gels to study the role of the quaternary structure of the enzyme in the activation process. We found that when two poxB gene alleles coexisted in cells, heterotetrameric species were formed in addition to homotetramers. The concentration of each tetrameric species varied according to the concentration of the different subunits present, and the distribution seemed virtually identical to those expected from random mixing. We showed that the intrinsic activity of pyruvate oxidase was not affected by interactions among the four subunits. However, binding of the enzyme to lipids, a property required for function in vivo, required that a tetramer contain at least two subunits capable of lipid binding. Our data fit the model proposed previously (Grabau, C., Chang, Y.-Y., and Cronan, J. E., Jr. (1989) J. Biol. Chem. 264, 12510-12519) in which the carboxyl termini of two subunits interact to form a functional lipid-binding domain. We also have detected oxidase activity in a form of oxidase of unusually high electrophoretic mobility. This form seems to be either a monomeric or a dimeric form (more probably the former) of the oxidase subunit.  相似文献   

19.
The effect of temperature on the kinetic parameters of phosphoenolpyruvate carboxylase purified from Crassula argentea was such that both the Vmax and Km(MgPEP) values tended upward over the range from 11 to 35 degrees C. The increased rate at low temperatures due to the low Km is at least partially offset by the increased Vmax at higher temperatures, potentially leading to a broad plateau of enzyme activity and a relatively small effect of temperature on the enzyme. The cooperativity was negative at 11 degrees C, but above 15 degrees C it became positive. The presence of 5 mM glucose-6-phosphate has relatively little effect on Vmax but it clearly reduces Km and overcomes any effect of temperature on this parameter in the range studied. Positive cooperativity is observed only at temperatures above 25 degrees C. The size of the native enzyme, as determined by dynamic light scattering, was strongly toward the tetrameric form. At a temperature of 40 degrees C and above, a considerable oligomerization takes place. No loss of activity can be observed in this range of temperature. In the presence of either glucose-6-phosphate or magnesium phosphoenolpyruvate, at temperatures under 25 degrees C, the equilibrium is displaced toward higher levels of aggregation. Maximal accumulation of lead malate occurred at 10 to 12 degrees C in vivo with reduction to about 25% at 35 degrees C. Glucose-6-phosphate followed a similar curve in response to temperature, but the overall difference was about 50%. The sum of phosphoenolpyruvate plus pyruvate is level at night temperatures below 25 degrees C, doubling at 35 degrees C. Calculated concentrations of malate, glucose-6-phosphate, and phosphoenolpyruvate plus pyruvate indicate that the concentrations present are equal to or greater than Ki, Ka, and Km values for these metabolites, respectively.  相似文献   

20.
N-Acetylneuraminate lyase [N-acetylneuraminic acid aldolase EC 4.1.3.3] from Escherichia coli was purified by protamine sulfate treatment, fractionation with ammonium sulfate, column chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA 44, and preparative polyacrylamide gel electrophoresis. The purified enzyme preparation was homogeneous on analytical polyacrylamide gel electrophoresis, and was free from contaminating enzymes including NADH oxidase and NADH dehydrogenase. The enzyme catalyzed the cleavage of N-acetylneuraminic acid to N-acetylmannosamine and pyruvate in a reversible reaction. Both cleavage and synthesis of N-acetylneuraminic acid had the same pH optimum around 7.7. The enzyme was stable between pH 6.0 to 9.0, and was thermostable up to 60 degrees C. The thermal stability increased up to 75 degrees C in the presence of pyruvate. No metal ion was required for the enzyme activity, but heavy metal ions such as Ag+ and Hg2+ were potent inhibitors. Oxidizing agents such as N-bromosuccinimide, iodine, and hydrogen peroxide, and SH-inhibitors such as p-chloromercuribenzoic acid and mercuric chloride were also potent inhibitors. The Km values for N-acetylneuraminic acid and N-glycolylneuraminic acid were 3.6 mM and 4.3 mM, respectively. Pyruvate inhibited the cleavage reaction competitively; Ki was calculated to be 1.0 mM. In the condensation reaction, N-acetylglucosamine, N-acetylgalactosamine, glucosamine, and galactosamine could not replace N-acetylmannosamine as substrate, and phosphoenolpyruvate, lactate, beta-hydroxypyruvate, and other pyruvate derivatives could not replace pyruvate as substrate. The molecular weight of the native enzyme was estimated to be 98,000 by gel filtration methods. After denaturation in sodium dodecyl sulfate or in 6 M guanidine-HCl, the molecular weight was reduced to 33,000, indicating the existence of 3 identical subunits. The enzyme could be used for the enzymatic determination of sialic acid; reaction conditions were devised for determining the bound form of sialic acid by coupling neuraminidase from Arthrobacter ureafaciens, lactate dehydrogenase, and NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号