首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the identification of mirror type internal symmetry centers in amino acid sequences (AASs) the new method, named by the method of internal symmetry scanning, was developed. The method, contrary to earlier ones, can be used for analysis of large clusters of primary structures of related proteins. The internal symmetry centres, containing both one and two amino acid residues, can be identified rapidly and effectively by the method. Additionally, the new method allow to estimate quantitatively the homology of AASs, which are antiparallel to relation of the centres. The different modifications of the method can be used for revealing of both high conservative and unequal symmetrical structures in AASs of proteins. Usually the structures coincide with functionally important regions of protein molecules. The method was used for investigation of primary structures of members of heterotrimeric G-protein a a-subunit superfamily. The positive correlation between conservativity of primary structure and distribution of mirror type internal symmetry centres was shown.  相似文献   

2.
Solution NMR studies of a (15)N-labeled G-protein alpha-subunit (G(alpha)) chimera ((15)N-ChiT)-reconstituted heterotrimer have shown previously that G-protein betagamma-subunit (G(betagamma)) association induces a "pre-activated" conformation that likely facilitates interaction with the agonist-activated form of a G-protein-coupled receptor (R*) and guanine nucleotide exchange (Abdulaev, N. G., Ngo, T., Zhang, C., Dinh, A., Brabazon, D. M., Ridge, K. D., and Marino, J. P. (2005) J. Biol. Chem. 280, 38071-38080). Here we demonstrated that the (15)N-ChiT-reconstituted heterotrimer can form functional complexes under NMR experimental conditions with light-activated, detergent-solubilized rhodopsin (R*), as well as a soluble mimic of R*. NMR methods were used to track R*-triggered guanine nucleotide exchange and release of guanosine 5'-O-3-thiotriphosphate (GTPgammaS)/Mg(2+)-bound ChiT. A heteronuclear single quantum correlation (HSQC) spectrum of R*-generated GTPgammaS/Mg(2+)-bound ChiT revealed (1)HN, (15)N chemical shift changes relative to GDP/Mg(2+)-bound ChiT that were similar, but not identical, to those observed for the GDP.AlF(4)(-)/Mg(2+)-bound state. Line widths observed for R*-generated GTPgammaS/Mg(2+)-bound (15)N-ChiT, however, indicated that it is more conformationally dynamic relative to the GDP/Mg(2+)- and GDP.AlF(4)(-)/Mg(2+)-bound states. The increased dynamics appeared to be correlated with G(betagamma) and R* interactions because they are not observed for GTPgammaS/Mg(2+)-bound ChiT generated independently of R*. In contrast to R*, a soluble mimic that does not catalytically interact with G-protein (Abdulaev, N. G., Ngo, T., Chen, R., Lu, Z., and Ridge, K. D. (2000) J. Biol. Chem. 275, 39354-39363) is found to form a stable complex with the GTPgammaS/Mg(2+)-exchanged heterotrimer. The HSQC spectrum of (15)N-ChiT in this complex displays a unique chemical shift pattern that nonetheless shares similarities with the heterotrimer and GTPgammaS/Mg(2+)-bound ChiT. Overall, these results demonstrated that R*-induced changes in G(alpha) can be followed by NMR and that guanine nucleotide exchange can be uncoupled from heterotrimer dissociation.  相似文献   

3.
Phospholipase D (PLD) and heterotrimeric G-protein both play important, diverse roles in cellular regulation and signal transduction. Here we have determined the physical interaction between plant PLD and the only canonical alpha-subunit (Galpha) of the G-protein in Arabidopsis thaliana and the molecular basis for the interaction. PLDalpha1 expressed in either Escherichia coli or Arabidopsis was co-precipitated with Galpha. PLDalpha1 contains a sequence motif analogous to the G alpha-interacting DRY motif normally conserved in G-protein-coupled receptors. Mutation of the central Lys residue PLD(K564A) of this motif abolished the PLDalpha1-Galpha binding, whereas mutation of the two flanking residues PLD(E563A) and PLD(F565A) decreased the binding. Addition of Galpha to PLDalpha1 inhibited PLDalpha1 activity, whereas the PLD(K564A) mutation that disrupted the Galpha-PLDalpha1 binding abolished the inhibition. GTP relieved the Galpha inhibition of PLDalpha1 activity and also inhibited the binding between PLDalpha1 and Galpha. Meanwhile, the PLDalpha1-Galpha interaction stimulated the intrinsic GTPase activity of Galpha. Therefore, these results have demonstrated the direct binding between Galpha and PLDalpha1, identified the DRY motif on PLDalpha1 as the site for the interaction, and indicated that the interaction modulates reciprocally the activities of PLDalpha1 and Galpha.  相似文献   

4.
Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models.  相似文献   

5.
Amongst the many stimuli orienting the growth of plant roots, of critical importance are the touch signals generated as roots explore the mechanically complex soil environment. However, the molecular mechanisms behind these sensory events remain poorly defined. We report an impaired obstacle-avoiding response of roots in Arabidopsis lacking a heterotrimeric G-protein. Obstacle avoidance may utilize a touch-induced release of ATP to the extracellular space. While sequential touch stimulation revealed a strong refractory period for ATP release in response to mechano-stimulation in wild-type plants, the refractory period in mutants was attenuated, resulting in extracellular ATP accumulation. We propose that ATP acts as an extracellular signal released by mechano-stimulation and that the G-protein complex is needed for fine-tuning this response.  相似文献   

6.
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits   总被引:1,自引:0,他引:1  
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of "regulator of G-protein signaling" (RGS) proteins that accelerate the rate of GTP hydrolysis by Galpha subunits (dubbed GTPase-accelerating protein or "GAP" activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Galpha subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Galpha effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Galpha and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Galpha subunits to 7TM receptors in the absence of conventional Gbetagamma dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Galpha AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Galpha subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Galpha subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.  相似文献   

7.
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.  相似文献   

8.
9.
A gene encoding the alpha-subunit of a guanine nucleotide binding regulatory protein (G-protein) was isolated from a library of genomic Caenorhabditis elegans DNA. The predicted coding region is colinear to related genes from mammals and the 356 amino acid residues show 63% sequence identity to e.g. rat Gi alpha 2. Three of the eight introns within the coding sequence are at exactly the same positions as those in a Drosophila G-protein alpha-subunit gene, and two of these are also conserved in the mammalian homologues. The nematode gene does not encode the cysteine residue that forms the substrate site for pertussis toxin-catalyzed ADP-ribosylation in several G-proteins. In spite of the similarity to mammalian G-protein alpha-subunit genes the gene can not unambiguously be categorized in one of the classes of G-proteins recognized in mammals (G alpha i, o, z, etc.). The position of the gene on the physical map of the animal was determined (chromosome V). The cloning and sequencing of this gene can be the starting point of reverse genetics experiments aimed at the isolation of animals mutated in a G-protein alpha-subunit gene.  相似文献   

10.
Cloned cDNA encoding the alpha-subunit of the adenylate cyclase-stimulating G-protein (Gs), carried by a simian virus 40 vector, has been introduced into the cyc- variant of S49 lymphoma cells by electroporation. In contrast to untransfected cys- cells, clones transformed with the cDNA exhibit an increase in intracellular cyclic AMP concentration in response to a beta-adrenergic agonist.  相似文献   

11.
2-[4'-Maleimidylanilino]naphthalene 6-sulfonic acid (MIANS) irreversibly inactivates Na,K-ATPase in a time- and concentration-dependent manner. Inactivation is prevented by 3 mM ATP or low K(+) (<1 mM); the protective effect K(+) is reversed at higher concentrations. This biphasic effect was also observed with K(+) congeners. In contrast, Na(+) ions did not protect. MIANS inactivation disrupted high affinity ATP binding. Tryptic fragments of MIANS-labeled protein were analyzed by reversed phase high performance liquid chromatography. ATP clearly protected one major labeled peptide peak. This observation was confirmed by separation of tryptic peptides in SDS-polyacrylamide gel electrophoresis revealing a single fluorescently-labeled peptide of approximately 5 kDa. N-terminal amino acid sequencing identified the peptide (V(545)LGFCH...). This hydrophobic peptide contains only two Cys residues in all sodium pump alpha-subunit sequences and is found in the major cytoplasmic loop between M4 and M5, a region previously associated with ATP binding. Subsequent digestion of the tryptic peptide with V8 protease and N-terminal amino acid sequencing identified the modified residue as Cys(577). The cation-dependent change in reactivity of Cys(577) implies structural alterations in the ATP-binding domain following cation binding and occlusion in the intramembrane domain of Na,K-ATPase and expands our knowledge of the extent to which cation binding and occlusion are sensed in the ATP hydrolysis domain.  相似文献   

12.
The protein engineering analysis of the alpha-spectrin SH3 domain at three different stability conditions (pH 7.0, 3.5 and 2.5) reveals a folding transition state structured around the distal loop beta-hairpin and the 310-helix. This region is impervious to overall changes in protein stability, suggesting a transition state ensemble with little conformational variability. Comparison with the Src SH3 domain (36% sequence homology) indicates that the transition state in this protein family may be conserved. Discrepancies at some positions can be rationalized in terms of the different interactions made by the different side chains in both domains. Br?nsted plot analysis confirms the straight phi(doubledagger-U) results and shows two folding subdomains for this small protein. These results, together with previous data on circular permutants of the alpha-spectrin SH3 domain, indicate that polypeptide topology and chain connectivity play a major role in the folding reaction of this protein family.  相似文献   

13.
Shpakov AO 《Tsitologiia》2002,44(3):242-258
In the review, data of the literature and own results on the functional coupling between the serpentine type receptors and the heterotrimeric G-proteins are analyzed and summarized. The role of cytoplasmic loops and C-tail domain of the receptors in interaction with G-protein alpha-subunits of different types is discussed. On the basis of theoretical analysis it is shown that the second cytoplasmic loop and the proximal to the membrane segments of the third cytoplasmic loop, containing the main G-protein-coupled molecular determinants, have the cationic nature and can form the helical structures. A molecular model of signal transduction from the receptor to G-protein, based on the electrostatic interactions between the cytoplasmic loops of receptors and receptor-binding regions of G-proteins, is developed.  相似文献   

14.
Zuber S  Hynes MJ  Andrianopoulos A 《Genetics》2003,164(2):487-499
The opportunistic human pathogen Penicillium marneffei exhibits a temperature-dependent dimorphic switch. At 25 degrees, multinucleate, septate hyphae that can undergo differentiation to produce asexual spores (conidia) are produced. At 37 degrees hyphae undergo arthroconidiation to produce uninucleate yeast cells that divide by fission. This work describes the cloning of the P. marneffei gasC gene encoding a G-protein alpha-subunit that shows high homology to members of the class III fungal Galpha-subunits. Characterization of a DeltagasC mutant and strains carrying a dominant-activating gasC(G45R) or a dominant-interfering gasC(G207R) allele show that GasC is a crucial regulator of germination. A DeltagasC mutant is severely delayed in germination, whereas strains carrying a dominant-activating gasC(G45R) allele show a significantly accelerated germination rate. Additionally, GasC signaling positively affects the production of the red pigment by P. marneffei at 25 degrees and negatively affects the onset of conidiation and the conidial yield, showing that GasC function overlaps with functions of the previously described Galpha-subunit GasA. In contrast to the S. cerevisiae ortholog Gpa2, our data indicate that GasC is not involved in carbon or nitrogen source sensing and plays no major role in either hyphal or yeast growth or in the switch between these two forms.  相似文献   

15.
The primary structure of the alpha-subunit of the adenylate cyclase-stimulating G-protein (Gs) has been deduced from the nucleotide sequence of cloned DNA complementary to the bovine cerebral mRNA encoding the polypeptide. Comparison of the amino acid sequences of the alpha-subunits of Gs and transducin reveals that some of the highly conserved regions show sequence homology with elongation factor-Tu and ras p21 proteins and correspond to functional regions of guanine nucleotide-binding proteins.  相似文献   

16.
The primary structure of the alpha-subunit of the adenylate cyclase-inhibiting G-protein (Gi) has been deduced from the nucleotide sequence of cloned DNA complementary to the bovine cerebral mRNA encoding the polypeptide. A much higher degree of amino acid sequence homology is observed between the alpha-subunits of Gi and transducin (68%) than between those of Gi and the adenylate cyclase-stimulating G-protein (Gs) (43%) or between those of transducin and Gs (42%).  相似文献   

17.
In muscle inorganic phosphate strongly decreases force generation in the presence of millimolar MgATP, whereas phosphate slows shortening velocity only at micromolar MgATP concentrations. It is still controversial whether reduction in shortening velocity by phosphate results from phosphate binding to the nucleotide-free myosin head or from binding of phosphate to an actomyosin-ADP state as postulated for the inhibition of force generation by phosphate. Because most single-molecule studies are performed at micromolar concentrations of MgATP where phosphate effects on movement are rather prominent, clarification of the mechanisms of phosphate inhibition is essential for interpretation of data in which phosphate is used in single molecule studies to probe molecular events of force generation and movement. In in vitro assays we found that inhibition of filament gliding by inorganic phosphate was associated with increased fragmentation of actin filaments. In addition, phosphate did not extend dwell times of Cy3-EDA-ATP (2'(3')-O-[[2-[[6-[2-[3-(1-ethyl-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene)-1-propenyl]-3,3-dimethyl-5-sulfo-3H-indolio]-1-oxohexyl]amino]ethyl]carbamoyl]ATP) but reduced the number of Cy3-signals per field of view, approaching 50% at phosphate concentrations of 1-2 mM. Apparently, inhibition of movement does not result from binding of phosphate to an actomyosin-ADP intermediate as proposed by Hooft and coworkers (Hooft, A. M., Maki, E. J., Cox, K. K., and Baker, J. E. (2007) Biochemistry 46, 3513-3520) but, rather, from forming a strong-binding actomyosin-phosphate intermediate.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) cascades are activated in plants during responses to pathogens or to pathogen-derived elicitors and mediate intracellular stress responses. Here, we show that a rice (Oryza sativa) MAPK, OsMAPK6, was posttranslationally activated in a cell culture by a sphingolipid elicitor. Suppression of OsMAPK6 expression by RNA interference resulted in a strong reduction of pathogen-induced Phe ammonia-lyase mRNA, whereas the mRNA level of another rice MAPK, OsMAPK5a, was highly increased. Silencing of a small GTPase, OsRac1, by RNA interference or loss-of-function mutation (d1) of the heterotrimeric G-protein alpha-subunit gene resulted in a strong reduction of the OsMAPK6 protein levels and of kinase activation by a sphingolipid elicitor. Furthermore, coimmunoprecipitation experiments with OsRac1 and OsMAPK6 proteins showed that OsMAPK6 is closely associated with the active form of OsRac1, but not with inactive forms of OsRac1. These results indicate that these two G-proteins regulate an elicitor-inducible MAPK in rice at the protein level.  相似文献   

19.
The G-protein regulatory (GPR) motif, a conserved 25-30 amino acid domain found in multiple mammalian proteins, stabilizes the GDP-bound conformation of Galpha(i), inhibits guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding to Galpha(i) and competes for Gbetagamma binding to Galpha. To define the core GPR motif and key amino acid residues within a GPR peptide (TMGEEDFFDLLAKSQSKRMDDQRVDLAG), we determined the effect of truncation, insertion, and alanine substitutions on peptide-mediated inhibition of GTPgammaS binding to purified Galpha(i1). The bioactive core GPR peptide consists of 17 amino acids ((7)F-R(23)). Within this core motif, two hydrophobic sectors ((7)FF(8) and (10)LL(11)) and Q(22) are required for bioactivity, whereas M19A and R23A increased IC(50) values by 70-fold. Disruption of spatial relationships between the required sectors in the amino and carboxyl regions of the peptide also resulted in a loss of biological activity. Mutation of three charged sectors ((4)EED(6), R(18), (20)DD(21)) within the 28-amino acid GPR decreased peptide affinity by approximately 10-fold. Alanine substitutions of selected residues within the core GPR peptide differently influenced peptide inhibition of GTPgammaS binding to Galpha(i) versus Galpha(o). These data provide a platform for the development of novel, G-protein-selective therapeutics that inhibit Galpha(i)- mediated signaling, selectively activate Gbetagamma-sensitive effectors, and/or disrupt specific regulatory input to G-proteins mediated by GPR-containing proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号