首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of hydroxyl free radicals in 60Co gamma-irradiation of a dilute aqueous suspension of phosphatidyl choline liposomes, resulted in the rapid accumulation of lipid hydroperoxides (linearly with time), but only small concentrations of malondialdehyde. Incubation of the irradiated liposomes with ferric chloride was found to significantly increase the malondialdehyde, and evidence is presented that this resulted from iron catalysed decomposition of the lipid hydroperoxide. This suggests a role for free iron or iron chelates in the propagation of lipid peroxidation stimulated by other systems.  相似文献   

2.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   

3.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg2+ requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

4.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg(2+) requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

5.
The ability of liposomes bearing anti-HLA-DR Fab' fragments to target cells expressing the human HLA-DR determinant of the major histocompatibility complex class II (MHC-II) has been evaluated and compared to that of conventional liposomes. Anti-HLA-DR immunoliposomes did not bind to HLA-DR-negative cells. In contrast, a high level of binding was observed following incubation of immunoliposomes with cells bearing important levels of human HLA-DR. The accumulation of conventional and murine anti-HLA-DR immunoliposomes in different tissues has been investigated following a single subcutaneous injection given in the upper back of C3H mice. Anti-HLA-DR immunoliposomes resulted in a much better accumulation in the cervical and brachial lymph nodes when compared to conventional liposomes. The accumulation in the liver was similar for both liposomal preparations, whereas an approximately twofold decrease in accumulation was observed for immunoliposomes in the spleen. Given that HLA-DR surface marker is expressed on monocyte/macrophages and activated CD4+ T lymphocytes, the primary cellular reservoirs of the human immunodeficiency virus (HIV), the use of liposomes bearing surface-attached anti-HLA-DR could constitute a convenient strategy to more efficiently treat this debilitating retroviral disease. Moreover, the reported incorporation of high amounts of host-encoded HLA-DR proteins by HIV particles renders the use of liposomes bearing anti-HLA-DR antibodies even more attractive.  相似文献   

6.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

7.
The ability of liposomes bearing anti-HLA-DR Fab' fragments at the end termini of polyethyleneglycol chains (sterically stabilized immunoliposomes) to target HLA-DR expressing cells and increase the accumulation of liposomes into lymphoid organs has been evaluated and compared to that of conventional liposomes, sterically stabilized liposomes and conventional immunoliposomes after a single subcutaneous injection to mice. The accumulation of sterically stabilized liposomes in lymph nodes was higher than that of conventional liposomes. Sterically stabilized immunoliposomes accumulated much better than conventional immunoliposomes in all tissues indicating that the presence of PEG has an important effect on the uptake of immunoliposomes by the lymphatic system. Fluorescence microscopy studies showed that sterically stabilized liposomes are mainly localized in macrophage-rich areas such as the subcapsular region of lymph nodes and in the red pulp and marginal zone of the spleen. In contrast, sterically stabilized immunoliposomes mostly accumulated in the cortex in which follicles are located and in the white pulp of the spleen. As the human HLA-DR determinant of the major histocompatibility complex class II is expressed on activated CD4+ T lymphocytes and antigen presenting cells such as monocyte/macrophages and dendritic cells, known as the cellular reservoirs of HIV-1, liposomes bearing anti-HLA-DR antibodies constitute an attractive approach to concentrate drugs in HIV-1 reservoirs and improve their therapeutic effect.  相似文献   

8.
The effects of surfactant protein B (SP-B) and SP-C on the uptake of surfactant-like liposomes by alveolar type II cells and alveolar macrophages were studied both in vivo and in vitro. In vivo, mechanically ventilated rats were intratracheally instilled with fluorescently labeled liposomes that had SP-B and/or SP-C incorporated in different concentrations. Consequently, the alveolar cells were isolated, and cell-associated fluorescence was determined using flow cytometry. The results show that the incorporation of SP-B does not influence the uptake, and it also does not in the presence of essential cofactors. The inclusion of SP-C in the liposomes enhanced the alveolar type II cells at a SP-C to lipid ratio of 2:100. If divalent cations (calcium and magnesium) were present at physiological concentrations in the liposome suspension, uptake of liposomes by alveolar macrophages was also enhanced. In vitro, the incorporation of SP-B affected uptake only at a protein-to-lipid ratio of 8:100, whereas the inclusion of SP-C in the liposomes leads to an increased uptake at a protein-to-lipid ratio of 1:100. From these results, it can be concluded that SP-B is unlikely to affect uptake of surfactant, whereas SP-C in combination with divalent cations and other solutes are capable of increasing the uptake.  相似文献   

9.
The method of double isotopic labels was used to study dynamics of lipid metabolism between neuroblastoma C 1300 N 18 A 1 cells and lecithin liposomes which contained 4.5-5 mumol of lecithin in 1 ml of the suspension. The cell lipids were labelled by radioactive carbon and cultivated on the medium with [1-14C] sodium acetate, phosphatidylcholine of liposomes was labelled by tritium. It is shown that 15-30 min long incubation with liposomes causes a sharp decrease of the cholesterol esters amount with a simultaneous fall of the free cholesterol level. The total content of phospholipids in this case remains unchanged though there occurs the noticeable exchange of labelled phospholipids between cells and liposomes. The cholesterol content in the plasma membranes of cells lowers sharply. The neuroblastoma cells are able to compensate arising changes in the cholesterol level for 45-60 min after which they progressively die. 90 min later only an insignificant part of the population (about 10% of cells) is retained.  相似文献   

10.
It was found that complexes of the flavonoids quercetin, taxifolin, catechin and morin with divalent iron initiated an increase in light scattering in a suspension of unilamellar 100nm liposomes. The concentration of divalent iron in the suspension was 10μM. Liposomes were prepared from 1-palmitoyl-2-oleoylglycero-3-phoshpatidylcholine. The fluorescent resonance energy transfer (FRET) analysis of liposomes labeled with NBD-PE and lissamine rhodamine B dyes detected a slow lipid exchange in liposomes treated with flavonoid-iron complexes and calcium, while photon correlation spectroscopy and freeze-fracture electron microscopy revealed the aggregation and fusion of liposomes to yield gigantic vesicles. Such processes were not found in liposomes treated with phloretin because this flavonoid is unable to interact with iron. Rutin was also unable to initiate any marked changes because this water-soluble flavonoid cannot interact with the lipid bilayer. The experimental data and computer calculations of lipophilicity (cLogP) as well as the charge distribution on flavonoid-iron complexes indicate that the adhesion of liposomes is provided by an iron link between flavonoid molecules integrated in adjacent bilayers. It is supposed that calcium cations facilitate the aggregation and fusion of liposomes because they interact with the phosphate moieties of lipids.  相似文献   

11.
In the present study we have characterized mammalian sphingosine-1-phosphate phosphohydrolase (SPP1), an enzyme that specifically dephosphorylates sphingosine 1-phosphate (S1P) and which differs from previously described lipid phosphate phosphohydrolases. Based on sequence homology to murine SPP1, we cloned the human homolog. Transfection of human embryonic kidney 293 and Chinese hamster ovary cells with murine or human SPP1 resulted in marked increases in SPP1 activity in membrane fractions that were used to examine its enzymological properties. Unlike other known type 2 lipid phosphate phosphohydrolases (LPPs), but similar to the yeast orthologs, mammalian SPP1s are highly specific toward long chain sphingoid base phosphates and degrade S1P, dihydro-S1P, and phyto-S1P. SPP1 exhibited apparent Michaelis-Menten kinetics with S1P as substrate with an apparent K(m) of 38.5 microm and optimum activity at pH 7.5. Similar to other LPPs, SPP1 activity was also independent of any cation requirements, including Mg(2+), and was not inhibited by EDTA but was markedly inhibited by NaF and Zn(2+). However, SPP1 has some significantly different enzymological properties than the LPPs: the aliphatic cation propanolol, which is an effective inhibitor of type 1 phosphatidate phosphohydrolase activities and is only modestly effective as an inhibitor of LPPs, is a potent inhibitor of SPP1; the activity was partially sensitive to N-ethylmaleimide but not to the thioreactive compound iodoacetamide; and importantly, low concentrations of Triton X-100 and other non-ionic detergents were strongly inhibitory. Thus, in agreement with Cluster analysis which shows that outside of the consensus motif there is very little homology between SPP1s and the other type 2 lipid phosphohydrolases, SPP1s are significantly different and divergent from the mammalian LPPs.  相似文献   

12.
The purpose of this study was to begin investigating the nature of liposome interactions with colon tumor cells. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing [3H]actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with [3H]phosphatidylcholine or [14C]cholesterol) and of actinomycin D (trace labeled with 3H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effective than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.  相似文献   

13.
The in vitro interactions between negatively charged multilamellar liposomes and purified rat liver parenchymal and non-parenchymal cells were studied. The liposomes were labelled with [14C]cholesterol and contained [3H]methotrexate. For both cell types the time course of liposomal attachment to the cells slowed down gradually after a rapid initial phase lasting ca 90 min. The rate of attachment at 4 °C was 3–7 times lower than that at 37 °C, and the metabolic inhibitors dinitrophenol and iodoacetic acid caused reduction of 20–30%. Up to 45% of the cell-associated liposomal radioactivity could be detached within 1 h incubation with unlabelled liposomes. Whereas liver parenchymal cell suspension seemed to exhibit similar characteristics in vitro as in vivo, the non-parenchymal cells in vitro showed a 20–50-fold reduction in the rate of liposomal attachment compared to in vivo.  相似文献   

14.
曲丹  王慧梅  任洁 《植物研究》2015,35(4):623-627
以迷迭香悬浮培养细胞为材料,详细研究了基本培养基中添加蔗糖、麦芽糖和葡萄糖对细胞生长及次生代谢产物积累的影响,同时对不同蔗糖浓度处理的悬浮培养细胞抗氧化酶活性进行了研究。研究结果表明:在不同的糖处理中,30 g·L-1的蔗糖、70 g·L-1的麦芽糖及40 g·L-1的葡萄糖最有利于迷迭香悬浮培养细胞生长。30 g·L-1蔗糖和70 g·L-1麦芽糖处理中悬浮培养细胞的生长率分别为74.08%和72.33%,高出40 g·L-1葡萄糖处理接近3倍之多。30 g·L-1蔗糖处理的悬浮培养细胞迷迭香酸含量高出70 g·L-1麦芽糖处理228倍,略低于40 g·L-1葡萄糖处理。在不同蔗糖的处理中,随着蔗糖浓度的增加,迷迭香酸含量均呈现增加趋势,表明高浓度的蔗糖有利于悬浮培养细胞迷迭香酸的积累。在高浓度的蔗糖处理中,悬浮培养细胞H2O2和MDA含量明显增加,同时抗氧化酶SOD、POD及CAT的活性也明显增强,表明高浓度的蔗糖产生了渗透胁迫,这种渗透胁迫虽不利于迷迭香悬浮培养细胞的生长,但有利于次生代谢产物的积累。综合迷迭香悬浮细胞的生长率和迷迭香酸的含量,我们最终得出30 g·L-1的蔗糖最有利于迷迭香悬浮细胞的培养。  相似文献   

15.
Macromolecules such as DNA and RNA can be entrapped within liposomes associated with gangliosides by reverse-phase evaporation. When these liposomes are incubated with HVJ2 (Sendai virus), they deliver their contents into cultured cells efficiently. More than 95% cells of a Ltk- cell line (thymidine kinase-deficient cells) transiently expressed thymidine kinase activity by thymidine kinase gene transfer using HVJ liposomes with gangliosides. Stable transformants could be obtained efficiently from various cell lines by use of HVJ liposomes containing the neoR gene. The neo+ transformants were obtained at frequencies of about 0.2-1.0, 0.06-0.25, and 0.06-0.1% in monolayers of L, CHO-Kl, and HeLa-S3 cells, respectively. Moreover, in Ehrlich ascites tumor cells which grow in suspension, the frequency was more than 0.01%. On introduction of plasmid pTK4 into Ltk- cells, about 0.5-1.0% TK+ transformants were obtained. Cosmid DNA containing the neoR gene (about 45 kbp) was also introduced into L cells by this method and neo+ transformants were obtained at a frequency of 0.1%. When rat liver mRNA was introduced into L cells by HVJ liposomes with gangliosides, immunoprecipitation studies showed that the L cells secreted rat albumin and some other proteins into the cultured medium. Moreover, using erythrocyte membrane vesicles containing IgM that had been incubated with HVJ empty liposomes with gangliosides, the IgM could be introduced into all the L cells.  相似文献   

16.
Liposomes prepared with 25-hydroxycholesterol and egg phosphatidylcholine (PC) were incubated with bovine arterial smooth muscle cells for 8 h at 37 degrees C. Cells incubated in the absence of liposomes or with liposomes containing cholesterol and PC were used as controls. The results indicated that calcium accumulated in the smooth muscle cells incubated in the presence of 25-hydroxycholesterol containing liposomes in an amount proportional to the time of incubation. The calcium accumulation, as indicated by kinetic analysis, resulted from an increased compartment size. (Ca(2+)+Mg2+)-ATPase exhibited decreased activity after pretreatment with 25-hydroxycholesterol containing liposomes and the increased intracellular calcium content was directly proportional to the decreased (Ca(2+) + Mg2+)-ATPase activity. When lipids in the cell membrane were examined, a failure to change the cholesterol/phospholipids ratio in the membrane was noted. The 25-hydroxycholesterol content in the membrane determined by HPLC did not increase. An increase in sphingomyelin and a decrease in phosphatidylethanolamine and acidic phospholipids in the membrane was noted. We suggest that the accumulation of intracellular calcium comes from both an increase of calcium influx and a decrease of (Ca(2+) + Mg2+)-ATPase activity, which may be the consequence of changes in membrane phospholipid composition.  相似文献   

17.
Lipid phosphate monoesters including phosphatidic acid, lysophosphatidic acid, sphingosine 1-phosphate and ceramide 1-phosphate are intermediates in phosho- and sphingo-lipid biosynthesis and also play important roles in intra- and extra-cellular signaling. Dephosphorylation of these lipids terminates their signaling actions and, in some cases, generates products with additional biological activities or metabolic fates. The key enzymes responsible for dephosphorylation of these lipid phosphate substrates are collectively termed lipid phosphate phosphatases (LPPs). They are integral membrane enzymes with a core domain of six transmembrane spanning alpha-helices linked by extramembrane loops. LPPs are oriented in the membrane with their N- and C-termini facing the cytoplasm. LPPs exhibit isoform and cell specific localization patterns being variably distributed between endomembrane compartments (primarily the endoplasmic reticulum and Golgi apparatus) and the plasma membrane. The active site of these enzymes is formed from residues within two of the extramembrane loops and faces the lumen of endomembrane compartments or, when localized to the plasma membrane, towards, the extracellular space. Biochemical, pharmacological, cell biological and genetic studies identify roles for LPPs in both intracellular lipid metabolism and the regulation of both intra- and extra-cellular signaling pathways that control cell growth, survival and migration. This article describes procedures for the expression of LPPs in insect and mammalian cells and their analysis by SDS-PAGE and Western blotting. The most straightforward way to determine LPP activity is to measure release of the substrate phosphate group. We described methods for the synthesis and purification of [(32)P]-labeled LPP substrates. We describe the use of both radiolabeled and fluorescent lipid substrates for the detection, quantitation and analysis of the enzymatic activities of the LPPs measured using intact or broken cell preparations as the source of enzyme.  相似文献   

18.
Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs.  相似文献   

19.
吸烟气相物质引起膜的生物物理特性改变的研究   总被引:4,自引:0,他引:4  
本文用自旋标记方法测量了经过吸烟气相物质作用后脂质体膜流动性的变化,结果表明,随着吸烟气流量的不断加大,膜的流动性呈增大趋势.用马来酰亚胺自旋标记研究了吸烟气相物质对鼠肺细胞膜蛋白上巯基的影响,结果发现,随着通烟时间的延长,ESR波谱的强弱固定化比值逐渐减小,总的效应表现为膜蛋白上的巯基结合位点裸露程度变大.  相似文献   

20.
Abstract

Earlier studies showed that calcium and sphingomyelin increase in aortic intimal tissue with age. Liposomes having different aortic phospholipid concentrations were prepared to ascertain if the increase in calcium might have arisen from increased permeability to calcium. None of these liposomes were permeable to calcium, however, liposomes that contained sphingomyelin and carried an excess negative charge imparted by dicetylphosphate aggregatively precipitated out of suspension in 1 mM calcium chloride. The extent of precipitation was higher at higher sphingomyelin concentration but decreased as temperature increased. Cardiolipin with two negative charges per molecule supplied enough negative charge at 5 mol % to allow sphingomyelin containing liposomes to precipitate out of a 1 mM calcium chloride suspension. Precipitation also occurred when dipalmitoylphosphatidylcholine (with a transition temperature similar to sphingomyelin) replaced sphingomyelin in acidic liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号