首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coenzyme A-dependent transacylation system in rabbit liver microsomes   总被引:1,自引:0,他引:1  
The activities of cofactor-independent and CoA-dependent transacylation were examined for various rabbit tissues. Liver microsomes were found to exhibit relatively high CoA-dependent transacylation activity, while the cofactor-independent transacylation activity was low. The apparent Km values for CoA were 1.4 microM (acceptor, 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC] and 3.8 microM (acceptor, 1-acyl-sn-glycero-3-phosphoethanolamine (1-acyl-GPE], respectively. The apparent Vmax values were 2.6 nmol/min/mg (1-acyl-GPC) and 1.2 nmol/min/mg (1-acyl-GPE), respectively. The CoA-dependent transacylation reaction shows a distinct fatty acid specificity. [14C]18:2 and [14C]20:4 at the 2-positions and [14C]18:0 at the 1-positions of donor phospholipids were transferred to lysophospholipids in the presence of CoA. We observed the formation of considerable amounts of acyl-CoA from these fatty acids during the reaction, without the participation of ATP. The transfer of other fatty acids between phospholipids was shown to be almost nil. The very low transfer of 18:1 was in marked contrast to the effective utilization of 18:1-CoA by acyl-CoA:1-acyl-GPC acyltransferase. The effects of several compounds and heat treatment on these two acylation reactions were also examined. The CoA-dependent transacylation reaction may be important for the selective acylation of certain lysophospholipids, such as 1-acyl-GPE, in living cells with the cooperation of acyl-CoA:lysophospholipid acyltransferase, which generates CoA for the former reaction.  相似文献   

2.
The activities of three acylation systems for 1-alkenylglycerophosphoethanolamine (1-alkenyl-GPE), 1-acyl-GPE and 1-acylglycerophosphocholine (1-acyl-GPC) were compared in rat brain microsomes and the acyl selectivity of each system was clarified. The rate of CoA-independent transacylation of 1-[3H]alkenyl-GPE (approx. 4.5 nmol/10 min per mg protein) was about twice as high as in the case of 1-[3H]acyl-GPE and 1-[14C]acyl-GPC. On the other hand, the rates of CoA-dependent transacylation and CoA + ATP-dependent acylation (acylation of free fatty acids by acyl-CoA synthetase and acyl-CoA acyltransferase) of lysophospholipids were in the order 1-acyl-GPC greater than 1-acyl-GPE much greater than 1-alkenyl-GPE. HPLC analysis of newly synthesized molecular species revealed that the CoA-independent transacylation system exclusively esterified docosahexaenoate and arachidonate, regardless of the lysophospholipid class. The CoA-dependent transacylation and CoA + ATP-dependent acylation systems were almost the same with respect to the selectivities for unsaturated fatty acids when the same acceptor lysophospholipid was used, but some distinctive acyl selectivities were observed with different acceptor lysophospholipids. 1-Alkenyl-GPE selectively acquired only oleate in these two systems. 1-Acyl-GPE and 1-acyl-GPC showed selectivities for both arachidonate and oleate. In addition, an appreciable amount of palmitate was transferred to 1-acyl-GPC, not to 1-acyl-GPE, in CoA- or CoA + ATP-dependent manner. The acylation of exogenously added acyl-CoA revealed that the acyl selectivities of the CoA-dependent transacylation and CoA + ATP-dependent acylation systems may be mainly governed through the selective action of acyl-CoA acyltransferase. The preferential utilization of oleoyl-CoA by all acceptors and the different utilization of arachidonoyl-CoA between alkenyl and acyllysophospholipids indicated that there might be two distinct acyl-CoA:lysophospholipid acyltransferases that discriminate between oleoyl-CoA and arachidonoyl-CoA, respectively. Our present results clearly show that all three microsomal acylation systems can be active in the reacylation of three major brain glycerophospholipids and that the higher contribution of the CoA-independent system in the reacylation of ethanolamine glycerophospholipids, especially alkenylacyl-GPE, may tend to enrich docosahexaenoate in these phospholipids, as compared with in the case of diacyl-GPC.  相似文献   

3.
CoA-dependent transacylation activity in microsomes catalyzes the transfer of fatty acid between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acid. We examined the mechanism of the transacylation system using partially purified acyl-CoA:lysophosphatidylinositol (LPI) acyltransferase (LPIAT) from rat liver microsomes to test our hypothesis that both the reverse and forward reactions of acyl-CoA:lysophospholipid acyltransferases are involved in the CoA-dependent transacylation process. The purified LPIAT fraction exhibited ATP-independent acyl-CoA synthetic activity and CoA-dependent LPI generation from PI, suggesting that LPIAT could operate in reverse to form acyl-CoA and LPI. CoA-dependent acylation of LPI by the purified LPIAT fraction required PI as the acyl donor. In addition, the combination of purified LPIAT and recombinant lysophosphatidic acid acyltransferase could reconstitute CoA-dependent transacylation between PI and phosphatidic acid. These results suggest that the CoA-dependent transacylation system consists of the following: 1) acyl-CoA synthesis from phospholipid through the reverse action of acyl-CoA:lysophospholipid acyltransferases; and 2) transfer of fatty acyl moiety from the newly formed acyl-CoA to lysophospholipid through the forward action of acyl-CoA:lysophospholipid acyltransferases.  相似文献   

4.
2-Acyl-glycerophosphoethanolamine (2-acyl-GPE) acyltransferase and acyl-acyl carrier protein (acyl-ACP) synthetase are thought to be dual catalytic activities of a single inner membrane enzyme. A filter disc replica print method for the detection of acyl-ACP synthetase activity by colony fluorography was used to screen a mutagenized population of cells for acyl-ACP synthetase mutants (aas). All aas mutants lacked both acyl-ACP synthetase and 2-acyl-GPE acyltransferase activities in vitro. There was no detectable acyl-CoA-independent incorporation of exogenous fatty acids into phosphatidylethanolamine or the major outer membrane lipoprotein in aas mutants. Exogenous lysophospholipid uptake and acylation was also lacking in aas mutants. Lipoprotein acylation by phospholipids synthesized by the de novo biosynthetic pathway was not affected in aas mutants showing that this gene product was not directly involved in lipoprotein biogenesis. The aas mutants had an altered membrane phospholipid composition and accumulated both 2-acyl-GPE and acylphosphatidylglycerol. Acylphosphatidylglycerol accumulation was due to the transacylase activity of lysophospholipase L2 (the pldB gene product) since aas pldB double mutants accumulated 2-acyl-GPE, but not acylphosphatidylglycerol. The aas allele was mapped to 61 min of the Escherichia coli chromosome, and the deduced gene order in this region was thyA-aas-lysA. The biochemical, physiological, and genetic analyses of aas mutants support the conclusion that 2-acyl-GPE acyltransferase and acyl-ACP synthetase are two activities of the same protein and confirm that this enzyme system participates in membrane phospholipid turnover and governs the acyl-CoA independent incorporation of exogenous fatty acids and lysophospholipids into the membrane.  相似文献   

5.
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT.  相似文献   

6.
Acyl-CoA:2-acyl-sn-glycero-3-phosphocholine (GPC) acyltransferase is required for the maintenance of the asymmetric distribution of saturated fatty acids at the C-1 position of phosphatidylcholine; however, this activity has been reported to be absent in cardiac tissue. In the present study a very active acyl-CoA:2-acyl-GPC activity was detected and characterized in guinea-pig heart microsomes (microsomal fractions); the mitochondria did not appear to possess this activity. The acyl-CoA specificity of the microsomal acyl-CoA:2-acyl-GPC acyltransferase was distinct from the corresponding acyl-CoA:1-acyl-GPC acyltransferase. These differences were due to the position of the fatty acid on the lysophospholipid rather than the composition of the fatty acids. The enzyme did not exhibit a distinct preference for saturated fatty acids, as might be expected. Our results suggest that, in the heart, control of the intracellular composition and concentration of acyl-CoAs by acyl-CoA hydrolase and acyl-CoA synthetase may play an important role in maintaining the asymmetric distribution of fatty acids in phosphatidylcholine.  相似文献   

7.
Evidence is presented to indicate a metabolic relationship between arachidonic acid activation and its transfer to lysophospholipds by brain microsomes. Thus, in the presence of 1-acylglycerophosphocholines or 1-acyl-glycerophosphoinositols, the activation of labeled arachidonate to its acyl-CoA was enhanced, and the acyl-CoA formed was, in turn, transferred to the lysophospholipids to form the respective diacyl-glycerophospholipids. The coupling effect seems to pertain mainly to the lysophospholipids which are good substrates of the acyltransferase. Other lyso-compounds were either not effective or inhibitory to the arachidonate activation process. The activation-transfer activity mediated by the fatty acid ligase and acyltransferase could be dissociated by Triton X-100, which apparently stimulated the acyl-CoA ligase activity but inhibited the acyltransferase. These results suggest that fatty acid ligase and acyltransferase are located in close proximity within the membrane domain. The existence of a close metabolic relationship between these two enzymic reactions is important for maintaining a dynamic equilibrium between the free fatty acids and the membrane phospholipids. The mechanism is also useful in regulating the cellular acyl-CoA and lysophospholipid metabolism, because both compounds have membrane perturbing properties when present in excessive quantity.  相似文献   

8.
Over one hundred different phospholipid molecular species are known to be present in mammalian cells and tissues. Fatty acid remodeling systems for phospholipids including acyl-CoA:lysophospholipid acyltransferases, CoA-dependent and CoA-independent transacylation systems, are involved in the biosynthesis of these molecular species. Acyl-CoA:lysophospholipid acyltransferase system is involved in the synthesis of phospholipid molecular species containing sn-1 saturated and sn-2 unsaturated fatty acids. The CoA-dependent transacylation system catalyzes the transfer of fatty acids esterified in phospholipids to lysophospholipids in the presence of CoA without the generation of free fatty acids. The CoA-dependent transacylation reaction in the rat liver exhibits strict fatty acid specificity, i.e., three types of fatty acids (20:4, 18:2 and 18:0) are transferred. On the other hand, CoA-independent transacylase catalyzes the transfer of C20 and C22 polyunsaturated fatty acids from diacyl phospholipids to various lysophospholipids, especially ether-containing lysophospholipids, in the absence of any cofactors. CoA-independent transacylase is assumed to be involved in the accumulation of PUFA in ether-containing phospholipids. These enzymes are involved in not only the remodeling of fatty acids, but also the synthesis and degradation of some bioactive lipids and their precursors. In this review, recent progresses in acyltransferase research including the identification of the enzyme’s genes are described.  相似文献   

9.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   

10.
Ehrlich ascites cells were cultured with 1-O-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) or 1-O-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC) to reveal the selective retention of polyunsaturated fatty acids at second position of ether-containing phospholipids. Although small percentages of the lysophospholipids were degraded into long-chain alcohol, both alkyllyso-GPE and -GPC were acylated at the rate of approximately 2 nmol/30 min per 10(7) cells. Alkylacylacetylglycerols were prepared from the acylated products by phospholipase C treatment, acetylation and TLC, and fractionated according to the degree of unsaturation by AgNO3-TLC. The distribution of the radioactivity among the subfractions indicated that both alkyllysophospholipids were mainly esterified by docosahexaenoic acid and to a somewhat lesser extent by arachidonic acid. The selectivity for docosahexaenoic acid in the esterification of 1-alkyl-GPE was much stronger than in that of 1-alkyl-GPC. Although acyl-CoA: 1-alkyl-glycerophosphoethanolamine acyltransferase activity of Ehrlich cell microsomes with arachidonoyl-CoA and docosahexaenoyl-CoA as acyl donors was negligible compared with the acyl-CoA:1-alkyl-glycerophosphocholine acyltransferase activity, a significant amount of 1-alkyl-GPE was acylated in the microsomes without exogenously added acyl-CoA. HPLC analysis revealed that docosahexaenoic acid and arachidonic acid were mainly esterified by the microsomal transferase. Acylation of 1-alkyl-GPC with docosahexaenoic acid and arachidonic acid was also observed in the absence of added acyl-CoA, but the activity was lower than that for 1-alkyl-GPE. Although the source of the acyl donor in the acylation has not been determined, the acylation is probably due to the direct transfer of acyl groups between intact phospholipids. The above results provided the first evidence that the lysophospholipid acyltransferase system including the transacylase activity participates in the selective retention of docosahexaenoic acid in intact cells and a cell free system.  相似文献   

11.
Intact alveolar macrophages were found to acylate alkyl- and acyllysophospholipids with a high selectivity for arachidonate. A specific mechanism appears responsible for the incorporation of arachidonate into lysophospholipids in intact cells since the kinetic pattern for the formation of the 20:4 species was different from all other species. This specificity was investigated in more detail by examining the enzymatic acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by macrophage membranes; in the absence of CoA, ATP, and Mg2+, this lysophospholipid was acylated with a high preference for arachidonate that was independent of added free fatty acids. The addition of CoA alone increased the rate of acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine, mainly due to an increase in the formation of species other than those containing arachidonate. When CoA, ATP, and Mg2+ were present, the macrophage membranes catalyzed the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine without preference for arachidonate. A different apparent Km and Vmax was observed for reactions involving each cofactor condition. We conclude that the acylation of alkyl- and acyllysophospholipids by rabbit alveolar macrophages occurs by three separate mechanisms: a CoA-independent transacylation, a CoA-dependent transacylation (reverse reaction catalyzed by acyl-CoA acyltransferase), and an acyl-CoA-dependent acylation. The CoA-independent transacylation reaction is unique in that it is specific for arachidonate and accounts for the selective acylation of alkyl- and acyllysophospholipids by arachidonate in membrane preparations of alveolar macrophages. This reaction appears to be extremely important in the remodeling of phospholipid molecular species and the mobilization of arachidonate into ether-linked lipids. The transfer of arachidonate to 1-alkyl-2-lyso-sn-glycero-3-phosphocholine also is of importance in the final inactivation step for platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine), whereby 1-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine (a stored precursor of both platelet activating factor and arachidonic acid metabolites) is formed.  相似文献   

12.
The deacylation-reacylation process has been shown to be an important pathway for phospholipids to attain the desired acyl groups at the C-2 position. The acylation of 1-acyl-glycerophosphocholine (-GPC) in mammalian hearts has been well documented, but the acylation of 1-alkenyl-GPC has not been described. In this paper, we demonstrate the presence of acyl-CoA: 1-alkenyl-GPC acyltransferase for the acylation of 1-alkenyl-GPC in mammalian hearts; the highest activity is found in guinea pig heart. The guinea pig heart 1-alkenyl-GPC acyltransferase has only 10-40% of the 1-acyl-GPC acyltransferase activity, and both activities are located in the microsomal fraction. However, these two enzymes respond differently to cations, detergents and heat treatment, and the two enzymes also display different acyl specificity. Kinetic studies indicate that both reactions could not be accommodated by the same catalytic site. The results provide strong evidence that the two activities are from separate and distinct proteins. The specificity of 1-alkenyl-GPC acyltransferase for unsaturated species of acyl-CoA may play an important role in the maintenance of the high degree of unsaturated acyl groups found in guinea pig heart plasmalogens.  相似文献   

13.
A 20,000 X g particulate preparation isolated from maturing safflower seeds catalyzed the acylation of 1-acyl-sn-glycerol 3-phosphate with acyl-CoA to form phosphatidate. The specific activity of the reaction exceeded 200 nmol min-1 mg protein-1. Although this preparation was also capable of catalyzing the acylation of sn-glycerol 3-phosphate with acyl-CoA, the hydrolysis of phosphatidate, and the acylation of 1,2-diacylglycerol, phosphatidate was the only major product when the preparation was incubated with 1-acyl-glycerol-3-P and acyl-CoA. The enzyme responsible for this phosphatidate synthesis, 1-acyl-glycerol-3-P acyltransferase, showed a strict acyl-CoA specificity. The relative order of specificity for acyl-CoA was linoleoyl = oleoyl greater than palmitoleoyl greater than elaidoyl greater than cis-vaccenoyl greater than stearoyl = palmitoyl. This observation strongly suggests that the fatty acid composition of position 2 in phosphatidate synthesized in vivo primarily depends on both the acyl-CoA specificity of the 1-acyl-glycerol-3-P acyltransferase and the fatty acid composition of the acyl-CoA pool in the cell. Thus, the absence of saturated fatty acids at position 2 of safflower triacylglycerol may be explained in terms of the acyl-CoA specificity of the 1-acyl-glycerol-3-P acyltransferase. The fatty acid moiety esterified at position 1 of glycerol-3-P also affected the effectiveness of the reaction. The 1-acyl-glycerol-3-P acyltransferase utilized 1-acyl-glycerol-3-P molecular species in the following order of effectiveness: linoleoyl = oleoyl greater than palmitoyl. With a rise in incubation temperature, the initial rates of acylation with unsaturated acyl-CoA species increased more rapidly than those for saturated acyl-CoA species. A similar tendency was observed for saturated and unsaturated acyl acceptors. These data suggest that affinity of the acyltransferase for substrates may vary in response to changes in temperature, and that 1-acyl-glycerol-3-P acyltransferase may be involved in the alteration of the individual fatty acid compositions at positions 1 and 2 of glycerolipids in tissues grown at different temperatures. Based on these findings, further metabolism of 1-acyl-glycerol-3-P acyltransferase products could be the major factor determining the non-random distribution of fatty acids in safflower triacylglycerol.  相似文献   

14.
Acyl-CoA-dependent lysophospholipid acyltransferases play an important role in attaining the appropriate molecular species of phospholipids. A number of genes encoding these activities were recently identified. It has become clear that multiple genes can encode one enzymatic activity and that a given gene may encode multiple activities. Here we report the identification of a gene encoding a mammalian acyl-CoA-dependent lysophospholipid acyltransferase with prominent activity toward ethanolamine-containing lysophospholipids, which we termed acyl-CoA:lysophosphatidylethanolamine acyltransferase 2, LPEAT2 (previously annotated as AYTL3 or AGPAT7). LPEAT2 is predominantly expressed in brain, coinciding with an enrichment of phosphatidylethanolamine in this tissue. Ectopic expression of LPEAT2 in mammalian HEK293T cells led to a dramatic increase (up to 9-fold) in LPEAT activity when compared with cells transfected with empty vector or an unrelated acyltransferase. LPEAT2 also exhibited significant acyl-CoA-dependent acyltransferase activity toward 1-O-alkenyl-lysophosphatidylethanolamine, lysophosphatidylglycerol, 1-O-alkyl-lysophosphatidylcholine, lysophosphatidylserine, and lysophosphatidylcholine but lacked appreciable acylating activity toward glycerol 3-phosphate, lysophosphatidic acid, lysophosphatidylinositol, and diacylglycerol, demonstrating multiple but selective functions of LPEAT2 as an enzyme involved in phospholipid remodeling. LPEAT2 recognizes a broad range of medium and long chain fatty acyl-CoA, and its activity was not affected by Ca(2+). When overexpressed in mammalian cells, LPEAT2 is localized to the endoplasmic reticulum. siRNA-mediated knockdown of LPEAT2 in HEK293T cells significantly decreased LPEAT and 1-alkenyl-LPEAT activities but did not affect other lysophospholipid acylating activities. These findings identify LPEAT2 as an important enzyme in the biosynthesis of ethanolamine-containing phospholipids, especially in brain.  相似文献   

15.
1. 1-Acyl-sn-glycerol-3-phosphorylcholine and 1-acyl-sn-glycerol-3-phosphate acyltransferase activities were characterized in rat salivary gland microsomes. 2. The acyl-CoA selectivities between these two kinds of lysophospholipid acyltransferase activities were very different. 3. When the three major glands were compared (parotid, submandibular, sublingual), they showed their own particular acyltransferase activity, but they had very similar in acyl-CoA selectivity. 4. Those observations were also compared in rat liver microsomes.  相似文献   

16.
The influence of both polar head and acyl chain of lysophospholipid on the activity of partially purified acyl-CoA:lysolecithin acyltransferase from rabbit lung was studied. It was concluded that the presence of methyl groups on the nitrogen of the base was essential for recognition of lysophospholipid as substrate by the enzyme. With respect to the acyl chain length and saturation, the activity followed the order: 16:0 approximately equal to 18:1 greater than 14:0 greater than greater than greater than 18:0 approximately equal to 12:0. Also, the effect on the activity of the acyl chain on acyl-CoA was studied. The activity showed great selectivity for saturated acyl-CoAs. The activity with polyunsaturated fatty acids was very low and in the case of arachidonoyl-CoA was almost negligible. The comparison between crude microsomal preparations and partially purified preparations allowed to suggest that it could exist two different acyl-CoA:lysolecithin acyltransferases differing in their selectivity towards saturated and unsaturated fatty acids.  相似文献   

17.
Rat erythrocyte phosphatidylethanolamine (PE) consists of 60% alkenylacyl, 5% alkylacyl and 35% diacyl types. The fatty acid at the 2-position of these types is mainly composed of arachidonic acid. When intact rat erythrocytes were incubated with exogenous arachidonic acid, about 90% of the arachidonic acid incorporated into the PE fraction was found in the 2-position of the diacyl type. The rates of incorporation of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE were 78, 134 and 1360 pmol/h per mumol of the corresponding PE, respectively. The substrate specificities of endogenous phospholipase A2 and acyl-CoA:lysophospholipid acyltransferase were observed. DiacylPE was hydrolysed rapidly by endogenous phospholipase A2, while alkenylacyl- and alkylacylPE were poor substrates for the enzyme. The selective transfer of arachidonic acid into the 2-position of 1-acyl-lysoPE was observed. 1-Alkenyl- and 1-alkyl-lysoPE were also poor substrates for acyl-CoA:lysophospholipid acyltransferase. The acyltransferase activities with the lysoPE analogues were higher than the phospholipase A2 activities with PE analogues. These results suggest that the different incorporation rates of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE are based on the substrate specificity of endogenous phospholipase A2.  相似文献   

18.
19.
Although the acylation of 1-alkenylglycerophosphocholine in mammalian heart is well documented, the acylation of 1-alkenylglycerophosphoethanolamine in the heart was not reported. In this study, the presence of acyl CoA: 1-alkenylglycerophosphoethanolamine acyltransferase in the guinea pig heart microsomes was demonstrated. 1-Alkenylglycerophosphoethanolamine acyltransferase displayed a high degree of specificity towards acyl-CoA. The order of reactivity with acyl-CoA was found to be: linoleoyl much greater than arachidonyl greater than palmitoyl greater than stearoyl = oleoyl. 1-Acylglycerophosphoethanolamine acyltransferase in the microsomes also exhibited specificity towards acyl-CoA in the following manner: linoleoyl greater than arachidonyl much greater than palmitoyl greater than oleoyl greater than stearoyl. However, such specificity appeared to be dependent on acyl-CoA concentration. The acyl-CoA specificities of both enzymes did not correlate with the C-2 acyl distribution observed in the corresponding microsomal phospholipids. Our results suggest that in addition to the acyl specificity of the acyltransferases, intracellular concentrations of acyl-CoAs may also have an important role in determining the observed acyl patterns of the phospholipids. Based on the acyl specificities, pH profiles, and their responses to heat inactivation and thiol reagents, we conclude that 1-alkenylglycerophosphoethanolamine acyltransferase and 1-acylglycerophosphoethanolamine acyltransferase in guinea-pig heart microsomes are not the same enzyme.  相似文献   

20.
Recent studies have suggested that formation of Golgi membrane tubules involves the generation of membrane-associated lysophospholipids by a cytoplasmic Ca2+-independent phospholipase A2 (PLA2). Herein, we provide additional support for this idea by showing that inhibition of lysophospholipid reacylation by a novel Golgi-associated lysophosphatidylcholine acyltransferase (LPAT) induces the rapid tubulation of Golgi membranes, leading in their retrograde movement to the endoplasmic reticulum. Inhibition of the Golgi LPAT was achieved by 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976), a previously characterized antagonist of acyl-CoA cholesterol acyltransferase. The effect of CI-976 was similar to that of brefeldin A, except that the coatomer subunit beta-COP remained on Golgi-derived membrane tubules. CI-976 also enhanced the cytosol-dependent formation of tubules from Golgi complexes in vitro and increased the levels of lysophosphatidylcholine in Golgi membranes. Moreover, preincubation of cells with PLA2 antagonists inhibited the ability of CI-976 to induce tubules. These results suggest that Golgi membrane tubule formation can result from increasing the content of lysophospholipids in membranes, either by stimulation of a PLA2 or by inhibition of an LPAT. These two opposing enzyme activities may help to coordinately regulate Golgi membrane shape and tubule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号