首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the first time, the 31P nuclear magnetic resonance technique has been used to study the properties of isolated vacuoles of plant cells, namely the vacuolar pH and the inorganic phosphate content. Catharanthus roseus cells incubated for 15 hours on a culture medium enriched with 10 millimolar inorganic phosphate accumulated large amounts of inorganic phosphate in their vacuoles. Vacuolar phosphate ions were largely retained in the vacuoles when protoplasts were prepared from the cells and vacuoles isolated from the protoplasts. Vacuolar inorganic phosphate concentrations up to 150 millimolar were routinely obtained. Suspensions prepared with 2 to 3 × 106 vacuoles per milliliter from the enriched C. roseus cells have an internal pH value of 5.50 ± 0.06 and a mean trans-tonoplast ΔpH of 1.56 ± 0.07. Reliable determinations of vacuolar and external pH could be made by using accumulation times as low as 2 minutes. These conditions are suitable to follow the kinetics of H+ exchanges at the tonoplast. The 31P nuclear magnetic resonance technique also offered the possibility of monitoring simultaneously the stability of the trans-tonoplast pH and phosphate gradients. Both appeared to be reasonably stable over several hours. The buffering capacity of the vacuolar sap around pH 5.5 has been estimated by several procedures to be 36 ± 2 microequivalents per milliliter per pH unit. The increase of the buffering capacity due to the accumulation of phosphate in the vacuoles is, in large part, compensated by a decrease of the intravacuolar malate content.  相似文献   

2.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

3.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

4.
Abel S  Blume B  Glund K 《Plant physiology》1990,94(3):1163-1171
We have shown that highly purified vacuoles of suspension-cultured tomato (Lycopersicon esculentum) cells contain RNA-oligonucleotides, using two different approaches to label and detect RNA: (a) in vivo labeling of cellular RNA with [5-3H]uridine, followed by preparation of vacuoles from protoplasts and by quantification of radioactively labeled material; and (b) in vitro labeling and analysis on sequencing gels of nucleic acids prepared from tomato vacuoles and their identification as RNA. The intravacuolar location of the RNA found in vacuolar preparations was concluded from analyzing for RNA intact organelles after repeated flotation steps as well as ribonuclease A treatment. About 3% of the RNA in protoplasts was localized within vacuoles, exceeding by severalfold the contribution made by contamination with unlysed protoplasts and subcellular organelles. Investigation of the size distribution of vacuolar RNA revealed an oligonucleotide pattern strikingly different from that which would arise from contaminating protoplasts; vacuolar RNA fragments are considerably shorter than 80 nucleotides. Characterization of these oligoribonucleotides (3′-phosphorylated termini; relatively rich in pyrimidines) as possible products of tomato vacuolar ribonuclease I action, and, in addition, enzymatic hydrolysis of vacuolar RNA by inherent enzyme activities in lysed vacuole preparations support the hypothesis that plant vacuoles are involved in cellular nucleolytic processes.  相似文献   

5.
Sucrose breakdown in mature acidic `Persian' limes (Citrus aurantifolia [Christm.] Swing.) occurred at a rate of 30.6 picomoles per milliliter per day during 9 weeks storage at 15°C. Neither enzyme of sucrose catabolism (sucrose synthase or acid/alkaline invertase) was present in extracts of mature storage tissue. The average vacuolar pH, estimated by direct measurement of sap from isolated vacuoles and by the methylamine method, was about 2.0 to 2.2. In vitro acid hydrolysis of sucrose at physiological concentrations in a buffered solution (pH 2.2) occurred at identical rates as in matured limes. The results indicate that sucrose breakdown in stored mature acidic limes occurs by acid hydrolysis.  相似文献   

6.
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulselabeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.  相似文献   

7.
The vacuolar pH and the trans-tonoplast ΔpH modifications induced by the activity of the two proton pumps H+-ATPase and H+-PPase and by the proton exchanges catalyzed by the Na+/H+ and Ca2+/H+ antiports at the tonoplast of isolated intact vacuoles prepared from Catharanthus roseus cells enriched in inorganic phosphate (Y Mathieu et al 1988 Plant Physiol [in press]) were measured using the 31P NMR technique. The H+-ATPase induced an intravacuolar acidification as large as 0.8 pH unit, building a trans-tonoplast ΔpH up to 2.2 pH units. The hydrolysis of the phosphorylated substrate and the vacuolar acidification were monitored simultaneously to estimate kinetically the apparent stoichiometry between the vectorial proton pumping and the hydrolytic activity of the H+-ATPase. A ratio of H+ translocated/ATP hydrolyzed of 1.97 ± 0.06 (mean ± standard error) was calculated. Pyrophosphate-treated vacuoles were also acidified to a significant extent. The H+-PPase at 2 millimolar PPi displayed hydrolytic and vectorial activities comparable to those of the H+-ATPase, building a steady state ΔpH of 2.1 pH units. Vacuoles incubated in the presence of 10 millimolar Na+ were alkalinized by 0.4 to 0.8 pH unit. It has been shown by using 23Na NMR that sodium uptake was coupled to the H+ efflux and occurred against rather large concentration gradients. For the first time, the activity of the Ca2+/H+ antiport has been measured on isolated intact vacuoles. Ca2+ uptake was strongly inhibited by NH4Cl or gramicidin. Vacuoles incubated with 1 millimolar Ca2+ were alkalinized by about 0.6 pH unit and this H+ efflux was associated to a Ca2+ uptake as demonstrated by measuring the external Ca2+ concentration with a calcium specific electrode. Steady state accumulation ratios of Ca2+ as high as 100 were reached for steady state external concentrations about 200 micromolar. The rate of Ca2+ uptake appeared markedly amplified in intact vacuoles when compared to tonoplast vesicles but the antiport displayed a much lower affinity for calcium. The different behavior of intact vacuoles compared to vesicles appears mainly to be due to differences in the surface to volume ratio and in the rates of dissipation of the pH gradient. Despite its low affinity, the Ca2+/H+ antiport has a high potential capacity to regulate cytoplasmic concentration of calcium.  相似文献   

8.
Proton transport in isolated vacuoles from corn coleoptiles   总被引:7,自引:4,他引:3       下载免费PDF全文
Mandala S  Taiz L 《Plant physiology》1985,78(1):104-109
Vacuoles were isolated from corn coleoptile protoplasts and ATP-dependent proton transport was measured by quinacrine fluorescence quenching or by the uptake of [14C]methylamine. Intact vacuoles were judged to be free of a surrounding plasma membrane based on fluorescent staining with fluoroscein-diacetate. Essentially all of the detectable ATP-stimulated methylamine uptake and α-mannosidase activities present in intact protoplasts were recovered in isolated vacuoles. In contrast, the activities of marker enzymes for plasma membranes, Golgi, endoplasmic reticulum, and mitochondria were reduced to 5 to 17% in vacuolar preparations. The characteristics of proton pumping by isolated vacuoles were compared to those of light microsomal membranes possibly derived from the tonoplast. ATP-dependent proton pumping by both isolated vacuoles and light microsomal vesicles was stimulated by Cl, and inhibited by NO3, carbonyl cyanide-m-chlorophenylhydrazone, N,N′-dicyclohexylcarbodiimide, N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, diethylstilbestrol, and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, but not by vanadate. Both activities also showed substrate specificity for Mg-ATP. Finally, proton transport activities of vacuolar and microsomal fractions exhibited similar profiles after flotation in linear dextran gradients. We conclude that the microsomal proton pump previously characterized in corn coleoptiles (Mettler et al. 1982 Plant Physiol 70: 1738-1742) is derived from the tonoplast.  相似文献   

9.
We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H+-pyrophosphatase (H+-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H+-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitative analyses revealed that the occurrence of the bulbs correlated with the amount of GFP. Next, we prepared a construct of H+-PPase linked with a nondimerizing GFP (mGFP); we detected no bulbs. These results indicate that the membranes adhere face-to-face by antiparallel dimerization of GFP, resulting in the formation of bulbs. In plants expressing H+-PPase-mGFP, intravacuolar spherical structures with double membranes, which differed from bulbs in fluorescence intensity and intermembrane spacing, were still observed in peripheral endosperm, pistil epidermis and hypocotyls. Four-dimensional imaging revealed the dynamics of formation, transformation, and disappearance of intravacuolar spherical structures and transvacuolar strands in living cells. Visualization of H+-PPase-mGFP revealed intensive accumulation of the enzyme, not only in dividing and elongating cells but also in mesophyll, phloem, and nectary cells, which may have high sugar content. Dynamic morphological changes including transformation of vacuolar structures between transvacuolar strands, intravacuolar sheet-like structures, and intravacuolar spherical structures were also revealed.  相似文献   

10.
Acer pseudoplatanus cell suspension cultures were used to examine the ability of vacuoles isolated from protoplasts to hydrolyze their endogenous proteins. Total cell proteins were labeled by addition of [3H]leucine to the culture medium. After preparation of the protoplasts, vacuoles were isolated and were shown to be essentially free from other cellular components. Up to 30% of the [3H]leucine-labeled newly synthesized proteins were recovered in the vacuoles. When incubated for 6 hours at 20°C, the vacuoles degraded half of these proteins. The protein breakdown was temperature and pH dependent. Analysis by electrophoresis, in denaturing polyacrylamide gels, revealed that most of the vacuolar proteins were degraded. However, some vacuolar proteins were unaffected during a 6-hour incubation period. The results indicate that vacuoles are able to acquire and degrade intracellular proteins.  相似文献   

11.
Vacuolar pH in radish cotyledonal mesophyll cells   总被引:1,自引:0,他引:1  
D. Strack  V. Sharma  H. Felle 《Planta》1987,172(4):563-565
The vacuolar pH in cotyledonal mesophyll cells from radish (Raphanus sativus L. var. sativus) seedlings was determined from vacuoles, isolated from protoplasts through osmotic shock, by means of measurement of vacuole extracts with a pH meter and the methylamine method, and gave mean pH values of 6.28 and 6.26, respectively. Direct in situ measurements of the vacuolar pH from intact leaf tissue were recorded with pH-sensitive microelectrodes and gave a mean value of 6.0. The results are discussed with respect to possible erroneous pH measurements and the vacuolar location of specific anabolic reactions.  相似文献   

12.
Anthocyanin pigments within Tulipa petal vacuoles provide the means for real-time spectrophotometric monitoring of vacuolar sap pH and for studying ATP-dependent proton transport in isolated, intact vacuoles. Spectra of petal extracts were used to select empirically those wavelengths giving an approximately linear variation in anthocyanin absorbance with pH over a pH range of interest. A sensitive single-beam spectrophotometer with vertical optics was used to minitor absorbance changes of intact, settled vacuoles. Substrates and inhibitors of vacuolar ATPase (Lin, W., Wagner, G.J., Siegelman, H.W. and Hind, Q. (1977) Biochim. Biophys. Acta 465, 110–117) were added to probe proton transport. Acidification of the vacuole sap occurred following addition of MgATP, but not CaATP. Proton accumulation was inhibited by 10 μM Dio 9, an inhibitor of tonoplast ATPase in vitro, and the proton gradient established by addition of MgATP was dissipated after addition of 10 μM CCCP. No pumping response was observed with intact protoplasts. Potential differences across the tonoplast were directly measured by impaling vacuoles with glass microelectrodes. Potential differences of 10–20 mV (inside positive) were recorded when vacuoles were suspended in 0.7 M mannitol/10 mM Hepes buffer (adjusted to pH 8.0 with KOH), and 0.5 mM dithiothreitol. Addition of MgATP increased the potential difference by 2–5 mV.  相似文献   

13.
The vacuolar potential (Vvac) and its fluctuations were recorded in red beet vacuoles (Beta vulgaris L.). Measurements with vacuoles in their suspension medium gave Vvac = 10 ± 2 millivolts (referred to the external medium) when 3 molar KCl microelectrodes were used. Buffering the microelectrode filling solution at pH 7.7 reversed the sign of the potential: Vvac = −7 ± 2 millivolts. The magnitude of the potential fluctuations was lowered by dilution (5-1000 times) with the suspension medium containing components released by the cells during the mechanical preparation. Fluctuations were decreased by 50 millimolar KNO3 while they were enhanced by 5 millimolar ATP-Mg. No noticeable change in membrane resistance was detected. The presence of an ATPase bound to the tonoplast may explain the recorded noise spectra. These spectra imply a close connection between the rate of ATPase functioning and the magnitude of ionic fluxes across the tonoplast. It is suggested that noise analysis could be used to detect ATPase (or related enzyme) activity in vacuoles. Possible use of H+ diffusion through a buffered microelectrode, to modify intravacuolar pH, is also suggested.  相似文献   

14.
Glutathione transferase (GST) activity revealed in vacuoles of red beetroot (Beta vulgaris L.) cells was investigated in comparison with the GST activity of plastids and extracts of tissues. The level of GST activity determined by spectrophotometric method proved fairly high in water extracts and membrane fractions of isolated vacuoles and plastids, as well as in water extracts of tissues. In the objects studied, pH dependence of the GST activity slightly differed. Optimal pH for the vacuolar GST activity was in the range 7.0–7.5, for the GST of plastids and tissue extracts it was 7.5. The GSTs differed in specificity to the substrates fluorodifen and ethacrynic acid. The activity of the vacuolar and tissue extract GSTs with fluorodifen was significantly higher than that of the GST from plastids. Ethacrynic acid, often used as a competitive inhibitor of GST, almost completely inhibited the GST activity assayed with 1-chloro-2,4-dinitrobenzene as a main substrate. However, ethacrynic acid was a substrate only for the GSTs of vacuoles and tissue extract, but not for the GST of plastids. Using zymography allowing estimation of the GST activity in a gel after electrophoresis of proteins, several zones of enzymatic activity were revealed in all objects that may correspond to different isozymes. It was found that the composition of the vacuolar GST isoforms and their substrate specificity may differ from the GSTs of other cellular structures. It is assumed that vacuole, having quite high activity of GST, should make a significant contribution to intracellular detoxification processes.  相似文献   

15.
Putrescine and spermidine uptake in carrot (Daucus carota L., cv “Tip top”) protoplasts and isolated vacuoles was studied. Protoplasts and vacuoles accumulated polyamines very quickly, with maximum absorption within 1 to 2 minutes. The insertion of a washing layer containing 100 millimolar unlabeled putrescine or spermidine did not change this pattern, but strongly reduced the uptake of putrescine and spermidine in protoplasts and in vacuoles. The dependence of spermidine uptake on the external concentration was linear up to the highest concentrations tested in protoplasts, while that in vacuoles showed saturation kinetics below 1 millimolar (Km = 61.8 micromolar) and a linear component from 1 to 50 millimolar. Spermidine uptake in protoplasts increased linearly between pH 5.5 and 7.0, while there was a distinct optimum at pH 7.0 for vacuoles. Preincubation of protoplasts with 1 millimolar Ca2+ affected only surface binding but not transport into the cells. Nonpermeant polycations such as La3+ and polylysine inhibited spermidine uptake into protoplasts. Compartmentation studies showed that putrescine and spermidine were partly vacuolar in location and that exogenously applied spermidine could be recovered inside the cells. The characteristics of the protoplast and vacuolar uptake system induce us to put forward the hypothesis of a passive influx of polyamines through the plasmalemma and of the presence of a carrier-mediated transport system localized in the tonoplast.  相似文献   

16.
Calcium is sequestered into vacuoles of oat (Avena sativa L.) root cells via a H+/Ca2+ antiporter, and vesicles derived from the vacuolar membrane (tonoplast) catalyze an uptake of calcium which is dependent on protons (pH gradient [ΔpH] dependent). The first step toward purification and identification of the H+/Ca2+ antiporter is to solubilize and reconstitute the transport activity in liposomes. The vacuolar H+/Ca2+ antiporter was solubilized with octylglucoside in the presence of soybean phospholipids and glycerol. After centrifugation, the soluble proteins were reconstituted into liposomes by detergent dilution. A ΔpH (acid inside) was generated in the proteoliposomes with an NH4Cl gradient (NH4+in » NH4+out) as determined by methylamine uptake. Fundamental properties of ΔpH dependent calcium uptake such as the Km for calcium (~15 micromolar) and the sensitivity to inhibitors such as N,N′-dicyclohexylcarbodiimide, ruthenium red, and lanthanum, were similar to those found in membrane vesicles, indicating that the H+/Ca2+ antiporter has been reconstituted in active form.  相似文献   

17.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

18.
Weiss M  Bental M  Pick U 《Plant physiology》1991,97(3):1241-1248
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear polyphosphates, formed only after upshocks with NaCl and not with glycerol, indicative of compartmentation of Na+ into the vacuoles. Conversely, downshocks induce a slower transient accumulation of tripolyphosphates, indicating activation of a different hydrolytic process within the vacuoles. Osmotic shocks do not lead to release of atebrin from acidic vacuoles, indicating that they do not induce a major intravacuolar alkalinization. However, osmotic shocks induce transient permeability changes measured by amine-induced atebrin release from vacuoles. Hypoosmotic shocks transiently increase the permeability (up to 20-fold), whereas hyperosmotic shocks induce a rapid drop in permeability. Electron micrographs of osmotically shocked cells also reveal transient changes in the surface and internal organelles of D. salina cells. It is suggested that hyperosmotic and hypoosmotic shocks induce different changes within acidic vacuoles and in the organization and/or composition of the plasma membrane in Dunaliella.  相似文献   

19.
《Plant science》1987,50(2):97-104
The degradation of endogenously labelled glycoproteins was studied in Acer pseudoplatanus L. cell suspension cultures in experiments using a dual-label with [14C]mannose and [3H]leucine.After harvesting the cells, protoplasts were prepared and vacuoles isolated. More than 30% of both total newly synthesized proteins (3H radioactivity) and glycoproteins (14C radioactivity) were recovered inside the vacuoles, the lytic compartment of plant cells. Half of these proteins were degraded when isolated vacuoles were incubated for 6 h at 20°C. So, the vacuolar compartment appears to be a major site of glycoprotein degradation in the cell.The glycoproteins were degraded at the same rate as the total newly synthesized proteins. However, some vacuolar hydrolytic enzymes were found to be glycoproteins and resistant to proteolytic attack. The biochemical explanation for such a resistance is not clear at this time, but in Acer cells the presence of covalently bound carbohydrates in proteins does not seem to be involved in the selectivity of protein turnover.  相似文献   

20.
Pick U  Weiss M 《Plant physiology》1991,97(3):1234-1240
The location and mobilization of polyphosphates in response to an amine-induced alkaline stress were studied in the halotolerant alga Dunaliella salina. The following observations suggest that polyphosphates accumulate in acidic vacuoles: (a) Accumulation of large amounts of polyphosphates is manifested as intravacuolar dense osmiophilic bodies in electron micrographs. (b) Uptake of amines into the vacuoles induces massive hydrolysis of polyphosphates, demonstrated by in vivo 31P-nuclear magnetic resonance, and by analysis of hydrolytic products on thin layer chromatograms. The analysis indicates that: (a) Polyphosphate hydrolysis is kinetically correlated with amine accumulation and with the recovery of cytoplasmic pH. (b) The major hydrolytic product is tripolyphosphate. (c) The peak position of the tripolyphosphate terminal phosphate in nuclear magnetic resonance spectra is progressively shifted as the cells recover, indicating that the pH inside the vacuoles increases while the pH in the cytoplasm decreases. (d) In lysed cell preparations, in which vacuoles become exposed to the external pH, mild alkalinization in the absence of amines induces polyphosphate hydrolysis to tripolyphosphates. It is suggested that amine accumulation within vacuoles activates a specific phosphatase, which hydrolyzes long-chain polyphosphates to tripolyphosphates. The hydrolysis increases the capacity of the vacuoles to sequester amines from the cytoplasm probably by releasing protons required to buffer the amine, and leads to recovery of cytoplasmic pH. Thus, polyphosphate hydrolysis provides a high-capacity buffering system that sustains amine compartmentation into vacuoles and protects cytoplasmic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号