首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed to allow the level of F0F1ATP synthase capacity and the quantity of IF1 bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF1 content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF1 antibodies.Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF1 content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF1. In addition, both in vivo and in vitro, 1.3-1.4 mol of IF1 was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF1 in the F0 sector.  相似文献   

2.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

3.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared.  相似文献   

4.
5.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

6.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

7.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

8.
In the structure of bovine F1-ATPase inhibited with residues 1-60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme.  相似文献   

9.
Weber J  Senior AE 《FEBS letters》2003,545(1):61-70
Topical questions in ATP synthase research are: (1) how do protons cause subunit rotation and how does rotation generate ATP synthesis from ADP+Pi? (2) How does hydrolysis of ATP generate subunit rotation and how does rotation bring about uphill transport of protons? The finding that ATP synthase is not just an enzyme but rather a unique nanomotor is attracting a diverse group of researchers keen to find answers. Here we review the most recent work on rapidly developing areas within the field and present proposals for enzymatic and mechanoenzymatic mechanisms.  相似文献   

10.
The F(1)F(0) ATP synthase is a reversible molecular motor that employs a rotary catalytic cycle to couple a chemiosmotic membrane potential to the formation/hydrolysis of ATP. The multisubunit enzyme contains two copies of the b subunit that form a homodimer as part of a narrow, peripheral stalk structure that connects the membrane (F(0)) and soluble (F(1)) sectors. The three-dimensional structure of the b subunit is unknown making the nature of any interactions or conformational changes within the F(1)F(0) complex difficult to interpret. We have used circular dichroism and analytical ultracentrifugation analyses of a series of N- and C-terminal truncated b proteins to investigate its stability and structure. Thermal denaturation of the b constructs exhibited distinct two-state, cooperative unfolding with T(m) values between 30 and 40 degrees C. CD spectra for the region comprising residues 53-122 (b(53-122)) showed theta;(222)/theta;(208) = 0.99, which reduced to 0.92 in the presence of the hydrophobic solvent trifluoroethanol. Thermodynamic parameters for b(53-122) (DeltaG, DeltaH and DeltaC(p)) were similar to those reported for several nonideal, coiled-coil proteins. Together these results are most consistent with a noncanonical and unstable parallel coiled-coil at the interface of the b dimer.  相似文献   

11.
The amplitude of coronary reactive hyperemia (CRH), elicited by 15 s of ischemia, is reduced in hearts subjected to 5 min of ischemic preconditioning (IP). F0F1 ATP synthase activity and ATP concentration are also altered by IP. We hypothesized that F0F1 ATP synthase is differently modulated by the inhibitor protein IF(1) during CRH elicited before (CRHnp) and after (CRHprec) IP. Hemodynamic parameters were recorded in 10 anesthetized goats. Myocardial biopsies were obtained before IP (Cnp), during CRHnp, 4 and 6 min after the onset of CRHnp, after IP (Cprec), during CRHprec, and 4 min after CRHprec. F0F1 ATP synthase activity, ATP concentration, and ATP-to-ADP ratio (ATP/ADP) were determined. Compared with CRHnp, IP blunted CRHprec. F0F1 ATP synthase activity transiently increased during CRHnp, decreased 4 min after CRHnp, and returned to control 2 min later; it was lower after IP (Cprec) and did not change during and after CRHprec. All these changes in activity were modulated by IF1. During CRHnp, ATP concentration and ATP/ADP were reduced compared with Cnp and began to rise 6 min thereafter. During Cprec, both parameters were transiently reduced but increased during and after CRHprec. Hence, during CRHnp, F0F1 ATP synthase activity transiently increases and then decreases significantly. The short-lasting inhibition of the enzyme may explain why a few seconds of occlusion do not induce IP. After IP, F0F1 ATP synthase activity is blunted, and it is not affected by a subsequent 15 s of occlusion, which induces a blunted CRHprec. These results suggest that postischemic long-lasting inhibition of F0F1 ATP synthase activity may be a feature of the preconditioned heart. The increase in ATP concentration after preconditioning is in agreement with previous reports of reduced ATP hydrolysis by cytoplasmic ATPases.  相似文献   

12.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

13.
Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor   总被引:3,自引:0,他引:3  
The F(1)F(0)-type ATP synthase is a key enzyme in cellular energy interconversion. During ATP synthesis, this large protein complex uses a proton gradient and the associated membrane potential to synthesize ATP. It can also reverse and hydrolyze ATP to generate a proton gradient. The structure of this enzyme in different functional forms is now being rapidly elucidated. The emerging consensus is that the enzyme is constructed as two rotary motors, one in the F(1) part that links catalytic site events with movements of an internal rotor, and the other in the F(0) part, linking proton translocation to movements of this F(0) rotor. Although both motors can work separately, they must be connected together to interconvert energy. Evidence for the function of the rotary motor, from structural, genetic and biophysical studies, is reviewed here, and some uncertainties and remaining mysteries of the enzyme mechanism are also discussed.  相似文献   

14.
The membrane-traversing subunit c parallel from the F0 part of the ATP synthase molecule has been studied in chloroform/methanol by high-resolution 1H n.m.r. Various one-dimensional and two-dimensional techniques have been used for assignment purposes, some NOE connectivities were established and some 3JHN alpha coupling constants were measured from spin--echo experiments. The effects of varying pH, solvent composition, lanthanide concentration and temperature have been investigated. Evidence is presented that the molecule has extensive alpha-helical segments, and the hairpin structure suggested by other groups is supported by our n.m.r. data. Only one ionizable group, assigned to the C-terminal carboxyl, is observed to titrate in the pH range 2 to 10; so the conserved residue, Asp61, which binds dicyclohexylcarbodiimide, presumably has (at least in this solvent system) an abnormally high pK value.  相似文献   

15.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

16.
The F0F1-ATPase of the inner mitochondrial membrane catalyzes the conversion of a proton electrochemical energy into the chemical bond energy of ATP (Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C. (1977) Annu. Rev. Biochem. 46, 955-1026). To assess the role of the membrane potential (delta psi) in this process and to study the effect of very short pulses on ATP synthesis, we employed a high voltage pulsation method (Kinosita, K., and Tsong, T.Y. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 1923-1927) to induce a delta psi of controlled magnitude and duration in a suspension of submitochondrial particles and F0F1-ATPase vesicles. Cyanide-treated submitochondrial particles were exposed to electric pulses of 10-30 kV/cm of magnitude (generating a peak delta psi of 150-450 mV) and 1-100 microseconds duration. Net [32P]ATP synthesis from [32P]Pi and ADP was observed with maximal values of 410 pmol/mg X pulse for a 30 kV/cm-100-microseconds pulse. This corresponds to a yield of 10-12 mol of ATP per mol of F0F1 complex per pulse. As many as 4 nmol/mg were produced after pulsing the same sample 8 times. By varying the ionic strength of the suspending medium, and consequently the pulse width, it is clearly shown that the synthesis was electrically driven and did not correlate with Joule heating of the sample. Titrations using specific inhibitors and ionophores were performed. The voltage-induced ATP synthesis was 50% inhibited by 0.11 microgram/mg of oligomycin and 2.4 nmol/mg of N,N'-dicyclohexylcarbodiimide. Ionophores and uncouplers had varying degrees of inhibition. The dependence of ATP synthesis on pulse width was nonlinear, exhibiting a threshold at 10 microseconds and a biphasic behavior above this value. Isolated F0F1-ATPase reconstituted into asolectin vesicles also synthesized ATP when pulsed with electric fields. A 35 kV/cm pulse induced the synthesis of 115 pmol of ATP per mg of protein, which corresponds to approximately 0.34 mol of ATP per mol of F0F1-ATPase. This synthesis was also sensitive to oligomycin and dicyclohexylcarbodiimide. The possibility of turnover of the ATPase in microseconds is considered.  相似文献   

17.
The location of the endogenous inhibitor protein ( IF1) in the rotor/stator architecture of the bovine mitochondrial ATP synthase was studied by reversible cross-linking with dithiobis(succinimidylpropionate) in soluble F1I and intact F1F0I complexes of submitochondrial particles. Reducing two-dimensional electrophoresis, Western blotting, and fluorescent cysteine labeling showed formation of –IF1, IF1–IF1, –IF1, and –IF1 cross-linkages in soluble F1I and in native F1F0I complexes. Cross-linking blocked the release of IF1 from its inhibitory site and therefore the activation of F1I and F1F0I complexes in a dithiothreitol-sensitive process. These results show that the endogenous IF1 is at a distance 12 Å,to and subunits of the central rotor of the native mitochondrial ATP synthase. This finding strongly suggests that, without excluding the classical assumption that IF1 inhibits conformational changes of the catalytic subunits, the inhibitory mechanism of IF1 may involve the interference with rotation of the central stalk.  相似文献   

18.
Studies reported here were undertaken to gain greater molecular insight into the complex structure of mitochondrial ATP synthase (F(0)F(1)) and its relationship to the enzyme's function and motor-related properties. Significantly, these studies, which employed N-terminal sequence, mass spectral, proteolytic, immunological, and functional analyses, led to the following novel findings. First, at the top of F(1) within F(0)F(1), all six N-terminal regions derived from alpha + beta subunits are shielded, indicating that one or more F(0) subunits forms a "cap." Second, at the bottom of F(1) within F(0)F(1), the N-terminal region of the single delta subunit and the C-terminal regions of all three alpha subunits are shielded also by F(0). Third, and in contrast, part of the gamma subunit located at the bottom of F(1) is already shielded in F(1), indicating that there is a preferential propensity for interaction with other F(1) subunits, most likely delta and epsilon. Fourth, and consistent with the first two conclusions above that specific regions at the top and bottom of F(1) are shielded by F(0), further proteolytic shaving of alpha and beta subunits at these locations eliminates the capacity of F(1) to couple a proton gradient to ATP synthesis. Finally, evidence was obtained that the F(0) subunit called "F(6)," unique to animal ATP synthases, is involved in shielding F(1). The significance of the studies reported here, in relation to current views about ATP synthase structure and function in animal mitochondria, is discussed.  相似文献   

19.
ATP, the universal carrier of cell energy is manufactured from ADP and phosphate by the enzyme ATP synthase using the energy stored in a transmembrane ion gradient. The two components of the ion gradient (DeltapH or DeltapNa(+)) and the electrical potential difference Deltapsi are thermodynamically but not kinetically equivalent. In contrast to accepted wisdom, the electrical component is kinetically indispensable not only for bacterial ATP synthases but also for that from chloroplasts. Recent biochemical studies with the Na(+)-translocating ATP synthase of Propionigenium modestum have given a good idea of the ion translocation pathway in the F(0) motor. Taken together with biophysical data, the operating principles of the motor have been delineated.  相似文献   

20.
The mode of action of annexin A1 (ANXA1) is poorly understood. By using rapid subtraction hybridization we studied the effects of human recombinant ANXA1 and the N-terminal ANXA1 peptide on gene expression in a human larynx cell line. Three genes showed strong downregulation after treatment with ANXA1. In contrast, expression of CCR10, a seven transmembrane G-protein coupled receptor for chemokine CCL27 involved in mucosal immunity, was increased. Moreover the reduction in CCR10 expression induced by ANXA1 gene deletion was rescued by intravenous treatment with low doses of ANXA1. These findings provide new evidence that ANXA1 modulates gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号