共查询到20条相似文献,搜索用时 15 毫秒
1.
The State 1 to State 2 transition in the photosynthetic membranes of plants and green algae involves the functional coupling of phosphorylated light-harvesting complexes of photosystem II (LHCII) to photosystem I (PSI). We present evidence suggesting that in Chlamydomonas reinhardtii this coupling may be aided by a hyper-phosphorylated form of the LHCII-like CP29 protein (Lhcbm4). MS analysis of CP29 showed that Thr6, Thr16 and Thr32, and Ser102 are phosphorylated in State 2, whereas in State 1-exposed cells only phosphorylation of Thr6 and Thr32 could be detected. The LHCI-PSI supercomplex isolated from the alga in State 2 was found to contain strongly associated CP29 in phosphorylated form. Electron microscopy suggests that the binding site for this highly phosphorylated CP29 is close to the PsaH protein. It is therefore postulated that redox-dependent multiple phosphorylation of CP29 in green algae is an integral part of the State transition process in which the structural changes of CP29, induced by reversible phosphorylation, determine the affinity of LHCII for either of the two photosystems. 相似文献
2.
The photosystem II activity and energy dissipation was investigated when algal Chlamydomonas reinhardtii genotypes were exposed to dichromate toxicity effect. The exposure during 24 h to dichromate effect of two C. reinhardtii mutants having non-functional xanthophylls cycle, as npq1 zeaxanthin deficient and npq2 zeaxanthin accumulating, induced inhibition of PSII electron transport. After dichromate-induced toxicity, PSII functions
of C. reinhardtii mutants were investigated under different light intensities. To determine dichromate toxicity and light intensity effect
on PSII functional properties we investigated the change of energy dissipation via PSII electron transport, non-photochemical
regulated and non-regulated energy dissipation according to Kramer et al. (Photosynth Res 79:209–218, 2004). We showed the dependency between dichromate toxicity and light-induced photoinhibition in algae deficient in xanthophyll
cycle. When algal mutants missing xanthophylls cycle were exposed to dichromate toxicity and to high light intensity energy
dissipation via non-regulated mechanism takes the most important pathway reaching the value of 80%. Therefore, the mutants
npq1 and npq2 having non-functional xanthophylls cycle were more sensitive to dichromate toxic effects. 相似文献
3.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA
bovine serum albumin
- Chl
chlorophyll
- DCBQ
2,6-dichloro-p-benzoquinone
- DCMU
(diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea
- DMQ
2,5-dimethyl-p-benzoquinone
- EDTA
ethylenediamine tetraacetic acid
- EPR
electron paramagnetic resonance
- Hepes
N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid
- MES
2-[N-Morpholino]ethanesulfonic acid
- OEE
oxygen evolving enhancer
- PS II
photosystem II
- SDS-PAGE
sodium dedocyl sulfate polyacrylamide gel electrophoresis 相似文献
4.
The D1-precursor protein of the photosystem II reaction centre contains a carboxy-terminal extension whose proteolytic removal is necessary for oxygen-evolving activity. To address the question of the role of the carboxy-terminal extension in the green alga Chlamydomonas reinhardtii, we truncated D1 by converting codon Ser345 of the psbA gene into a stop codon. Particle gun transformation of an in vitro modified psbA gene fragment also carrying mutations conferring herbicide resistance yielded a homoplasmic transformant containing the stop codon. Since oxygen evolution capacity is not affected in this mutant as compared with herbicide-resistant control cells, the carboxy-terminal extension is dispensable for a functional photosystem II complex under normal growth conditions. 相似文献
5.
In recent years major progress has been made in describing the gene families that encode the polypeptides of the light-harvesting antenna system of photosystem II (PSII). At the same time, advances in the biochemical characterization of these antennae have been hampered by the high degree of similarity between the apoproteins. To help interpret the molecular results, we have re-examined the composition, the assembly and the phosphorylation patterns of the light-harvesting antenna of PSII (LHCII) in the green alga Chlamydomonas reinhardtii Dang, using a non-Tris SDS-PAGE system capable of resolving polypeptides that differ by as little as 200 daltons. Research to date has suggested that in C. reinhardtii the LHCII comprises just four polypeptides (p11, p13, p16 and p17), and CP29 and CP26 just one polypeptide each (p9 and p10, respectively), i.e. a total of six polypeptides. We report here that these antenna systems contain at least 15 polypeptides, 10 associated with LHCII, 3 with CP29, and 2 with CP26. All of these polypeptides have been positively identified by means of appropriate antibodies. We also demonstrate substantial heterogeneity to the pattern of in-vitro phosphorylation, with major differences found among members of closely spaced and immunologically related polypeptides. Most intriguing is the fact that the polypeptides that cross-react with the anti-type 2 LHCII antibodies of higher plants (p16, and to a lesser extent p11) are not phosphorylated, whereas in higher plants these are the most highly phosphorylated polypeptides. Also, unlike in higher plants, CP29 is heavily phosphorylated. Phosphorylation does not appear to have any effect on the mobility of polypeptides on fully denaturing SDS-PAGE gels. To learn more about the accumulation and organization of the light-harvesting polypeptides, we have also investigated a chlorophyll b-less mutant, cbn1-48. The LHCII is almost completely lost in this mutant, along with at least some LHCI. But the accumulation of CP29 and CP26 and their binding to PSII core complexes, is relatively unaffected. As expected, the loss of antenna polypeptides is accompanied by a reduction of the size of large reaction-center complexes. Following in-vitro phosphorylation the number of phosphorylated proteins is greatly increased in the mutant thylakoids compared to wildtype thylakoids. We present a model of the PSII antenna system to account for the new polypeptide complexity we have demonstrated.This work was supported by National Institute of Health grant GM22912 to L.A.S. We would like to thank Anastasios Melis for helpful discussions. 相似文献
6.
Antenna structure and excitation dynamics in photosystem I. II. Studies with mutants of Chlamydomonas reinhardtii lacking photosystem II. 总被引:1,自引:3,他引:1
下载免费PDF全文

Using time-resolved single photon counting, fluorescence decay in photosystem I (PS I) was analyzed in mutant strains of Chlamydomonas reinhardtii that lack photosystem II. Two strains are compared: one with a wild-type PS I core antenna (120 chlorophyll a/P700) and a second showing an apparent reduction in core antenna size (60 chlorophyll a/P700). These data were calculated from the lifetimes of core antenna excited states (75 and 45 ps, respectively) and from pigment stoichiometries. Fluorescence decay in wild type PS I is composed of two components: a fast 75-ps decay that represents the photochemically limited lifetime of excited states in the core antenna, and a minor (less than 10%) 300-800 ps component that has spectral characteristics of both peripheral and core antenna pigments. Temporal and spectral properties of the fast PS I decay indicate that (a) excitations are nearly equilibrated among the range of spectral forms present in the PS I core antenna, (b) an average excitation visits a representative distribution of core antenna spectral forms on all pigment-binding subunits regardless of the origin of the excitation, (c) reduction in core antenna size does not alter the range of antenna spectral forms present, and (d) transfer from peripheral antennae to the PS I core complex is rapid (less than 5 ps). 相似文献
7.
Stephen P. Mayfield Michèle Schirmer-Rahire Gerhard Frank Herbert Zuber Jean-David Rochaix 《Plant molecular biology》1989,12(6):683-693
The sequences of the nuclear genes of the 33 kDa (OEE1) and the 16 kDa (OEE3) polypeptides of the oxygen evolving complex of Chlamydomonas reinhardtii have been established. Comparison between the OEE1 protein sequences of C. reinhardtii and higher plants and cyanobacteria reveals 67 and 47% homology. In contrast, C. reinhardtii and higher plants have only 28% overall homology for OEE3 which is mostly limited to the central portion of the protein. The transit peptides of the C. reinhardtii proteins consist of 52 (OEE1) and, most likely, 51 (OEE1) amino acids. They have a basic amino terminal region and, at least in the case of OEE1, a hydrophobic segment at their carboxy terminal end typical of thylakoid lumen proteins. Comparison of the genomic and cDNA clones indicates that the OEE1 and OEE3 genes contain five and four introns, respectively, some of which are located within the coding sequences of the transit peptides. 相似文献
8.
J Olive M Recouvreur J Girard-Bascou F A Wollman 《European journal of cell biology》1992,59(1):176-186
About 20% of the exoplasmic face (EF) particles present in the freeze-fractured thylakoid membranes of the wild type strain of Chlamydomonas reinhardtii remain in mutants lacking photosystem II (PSII) because of the absence of either one of the two PSII subcomplexes CP43 or D1/D2/CP47. We show that about half of these residual EF particles can be accounted for by PSII subcomplexes still present in such mutants, and by cytochrome (cyt) b6/f complexes. Analysis of double mutants lacking both types of protein complexes points to an association of cyt b6/f complexes with PSII subcomplexes in some of these EF particles and to a requirement in cyt b6/f complexes for the translocation of each of the two PSII subcomplexes (the CP43 subunit and the D1/D2/CP47 subcomplex) from the unstacked to the stacked regions of the thylakoid membranes. 相似文献
9.
Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 degrees C resulted in comparable downward shifts in the temperature peak maxima (T(M)) for S2QB- charge pair recombination events, with minimal changes in S2QA- recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB- charge pair recombination events with no concomitant change in the activation energy for S2QA- recombination events. This resulted in a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 degrees C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light. 相似文献
10.
Light-harvesting chlorophyll a/b-binding proteins (LHCI) associated with photosystem I (PSI) and the genes encoding these proteins have been characterized in the unicellular green alga Chlamydomonas reinhardtii, extending previous studies of the PSII-LHCII [Teramoto et al. (2001) Plant Cell Physiol. 42: 849]. In order to assign LHCI proteins in the thylakoid membranes, the PSI-LHCI supercomplex that retains all of the major LHCI proteins was purified. Seven distinct LHCI proteins were resolved from the purified supercomplex by a high-resolution SDS polyacrylamide gel electrophoresis, and their N-terminal amino acid sequences were determined. One LHCI protein (band e) was newly found, although the other six LHCI proteins corresponded to those previously reported. Genomic clones encoding these seven LHCI proteins were newly isolated and the nucleotide sequences were determined. A comprehensive characterization of all members of Lhc gene family in this alga revealed that LHCI proteins are more highly diverged than LHCII, suggesting functional differentiation of the protein components in LHCI. Neighbor joining trees were constructed for LHC proteins from C. reinhardtii and those of Arabidopsis thaliana or Galdieria sulphuraria to assess evolutionary relationships. Phylogenetic analysis revealed that (1). green algal LHCI and LHCII proteins are more closely related to one another than to LHCI proteins in red algae, (2). green algae and higher plants possess seven common lineages of LHC proteins, and (3). Type I and III LHCI proteins are conserved between green algae and higher plants, while Type II and IV are not. These findings are discussed in the context of evolution of multiple diverse antenna complexes. 相似文献
11.
The intermediate electron acceptor in photosystem II is a pheophytin molecule. The radical anion of this molecule was studied using high field electron paramagnetic resonance in a series of Chlamydomonas reinhardtii mutants. Glutamic acid 130 of the D1 polypeptide is thought to hydrogen bond the ring V carbonyl group of this radical. Mutations at this site, designed to weaken or remove this hydrogen bond, strongly affected the g tensor of the radical. The upward shift of the g(x) component followed the decreasing hydrogen bonding capacity of the amino acid introduced. This behavior is similar to that of tyrosyl and semiquinone radicals. It is also consistent with the optical spectra of the pheophytin in similar mutants. Density functional calculations were used to calculate the g tensors and rationalize the observed trend in the variation of the g(x) value for pheophytin and bacteriopheophytin radical. The theoretical results support the experimental observations and demonstrate the sensitivity of g values to the electrostatic protein environment for these types of radicals. 相似文献
12.
13.
Vink M Zer H Alumot N Gaathon A Niyogi K Herrmann RG Andersson B Ohad I 《Biochemistry》2004,43(24):7824-7833
Reversible phosphorylation of chl a/b protein complex II (LHCII), the mobile light-harvesting antenna, regulates its association and energy transfer/dissipation to photosystem (PS) II or I (state transition). Excitation of LHCII induces conformational changes affecting the exposure of the phosphorylation site at the N-terminal domain to protein kinase(s) [Zer, H., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282; Zer, H., et al. (2003) Biochemistry 42, 728-738]. Thus, it was of interest to examine whether the pigment composition of LHCII affects the light-induced modulation of LHCII phosphorylation and state transition. To this end, we have used thylakoids of wild-type Chlamydomonas reinhardtii and xanthophyll deficient mutants npq1, lor1, npq2, npq1 lor1, and npq2 lor1. Phosphorylated protein bands P11, P13, and P17 are considered components of the mobile C. reinhardtii LHCII complex. The protein composition of these bands has been analyzed by mass spectrometry using Qtof-2 with a nanospray attachment. P11 and P13 contain C. reinhardtii light-harvesting chlorophyll a/b binding protein LhcII type I. P17 contains C. reinhardtii LhcII types III and IV. Illumination of isolated thylakoids inhibits the redox-controlled phosphorylation of polypeptide bands P13 and P17 and to a lower extent that of P11. The light-induced inhibition of LHCII phosphorylation and the state transition process are not influenced by extensive differences in the xanthophyll composition of the mutants. Thus, LHCII can be visualized as possessing two functionally distinct, independent domains: (i) the pigment binding transmembrane domain regulating the extent of energy transfer/dissipation and (ii) the surface-exposed phosphorylation site regulating the association of LHCII with PSII or PSI. 相似文献
14.
Ayumi Minoda Norihiro Sato Hisayoshi Nozaki Katsuhiko Okada Haruko Takahashi Kintake Sonoike Mikio Tsuzuki 《European journal of biochemistry》2002,269(9):2353-2358
The physiological role of sulfoquinovosyl diacylglycerol (SQDG) in photosynthesis was investigated with a SQDG defective mutant (hf-2) of Chlamydomonas reinhardtii that did not have any detectable amount of SQDG. The mutant showed a lower rate of photosystem II (PSII) activity by approximately 40% and also a lower growth rate than those of the wild-type. Results of genetical analysis of hf-2 strongly suggest that the SQDG defect and the lowered PSII activity are due to a single gene mutation. The supplementation of SQDG to hf-2 cells restored the lowered PSII activity to the same level as that of wild-type cells, and also enabled the mutant to grow even in the presence of 135 nm 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Moreover, the incubation of isolated thylakoid membranes of hf-2 with SQDG raised the lowered PSII activity. Chemical modifications of SQDG impaired the recovery of PSII activity. The results suggest that SQDG is indispensable for PSII activity in Chlamydomonas by maintaining PSII complexes in their proper state. 相似文献
15.
The dependence of the P(700)(+)/P(700) midpoint potential on kinetics of reduction of P(700)(+) in vivo has been examined in a series of site-directed mutants of Chlamydomonas reinhardtii in which the histidyl axial ligand to the Mg(2+) of the P(700) chlorophyll a has been changed to several different amino acids. In wild-type photosystem I, the potential of P(700)(+)/P(700) is 447 mV and the in vivo half-time of P(700)(+) reduction by its natural donor, plastocyanin, is 4 micros. Substitution of the axial histidine ligand with cysteine increases the potential of P(700)(+)/P(700) to 583 mV and changes the rate of P(700)(+) reduction to 0.8 micros. Mutants with a range of potentials between 447 and 583 mV show a strong correlation of the P(700)(+)/P(700) potential to the rate of reduction of P(700)(+) by plastocyanin. There is also an increase in the rate of photosystem I-mediated electron transfer from the artificial electron donor DCPIP to methyl viologen in thylakoid membranes. The results indicate that the overall rate constant of P(700)(+) reduction is determined by the rate of electron transfer between the copper and P(700)(+) and confirmed that in vivo there is a preformed complex between plastocyanin and photosystem I. Using approximations of the Marcus electron transfer theory, it is possible to estimate that the distance between the copper of plastocyanin and P(700)(+) is approximately 15 A. On the basis of this distance, the plastocyanin docking site should lie in a 10 A hollow formed by the lumenal exposed loops between transmembrane helices i and j of PsaA and PsaB. 相似文献
16.
R Bassi S Y Soen G Frank H Zuber J D Rochaix 《The Journal of biological chemistry》1992,267(36):25714-25721
In this study we have isolated the chlorophyll a/b-binding proteins from a photosystem I preparation of the green alga Chlamydomonas reinhardtii and characterized them by N-terminal sequencing, fluorescence, and absorption spectroscopy and by immunochemical means. The results indicate that in this organism, the light-harvesting complex of photosystem I (LHCI) is composed of at least seven distinct polypeptides of which a minimum number of three are shown to bind chlorophyll a and b. Both sequence homology and immunological cross-reactivity with other chlorophyll-binding proteins suggest that all of the LHCI polypeptides bind pigments. Fractionation of LHCI by mildly denaturing methods showed that, in contrast to higher plants, the long wavelength fluorescence emission typical of LHCI (705 nm in C. reinhardtii) cannot be correlated with the presence of specific polypeptides, but rather with changes in the aggregation state of the LHCI components. Reconstitution of both high aggregation state and long wavelength fluorescence emission from components that do not show these characteristics confirm this hypothesis. 相似文献
17.
Electron-transfer events leading to reconstitution of oxygen-evolution activity in manganese-depleted photosystem II membranes 总被引:1,自引:0,他引:1
O2-evolution activity and the Mn complex can be reconstituted in photosystem II by a process called photoactivation. We have studied the elementary steps in photoactivation by using electron paramagnetic resonance spectroscopy to probe electron transport in Mn-depleted photosystem II membranes. The electron donation reactions in Mn-depleted photosystem II were found to be identical with those in untreated photosystem II, except that electron donation from the Mn complex was absent and could be replaced by slower electron donation from exogenous Mn2+. Mn2+ photooxidation by Mn-depleted photosystem II membranes correlates with reconstitution of O2-evolution activity. However, photooxidation of Mn2+ occurs in competition with photooxidation of the tyrosine residue YD, and cytochrome b-559. Thus, these two species are excluded from direct participation in the initial steps in the assembly of the Mn complex. Because photooxidation of Mn2+ is slower than photooxidation of the competing electron donors, cytochrome b-559 and chlorophyll, as well as recombination of the charge-separated states chlorophyll+QA- or YZ+QA-, these other reactions dominate in a single photochemical turnover reaction. This provides a molecular basis for both the low yield and low quantum yield of photoactivation. The first photochemical step in the assembly of the Mn complex results in photooxidation of one Mn2+ ion. Therefore, the first intermediate in assembly of the Mn complex contains Mn3+. On the basis of these results and previous kinetic studies [Miller, A.-F., & Brudvig, G. W. (1989) Biochemistry 28, 8181], we conclude that the second intermediate of Mn complex assembly contains Mn2+Mn3+, which is photooxidized to Mn3+2. 相似文献
18.
Kawakami Keisuke Tokutsu Ryutaro Kim Eunchul Minagawa Jun 《Photosynthesis research》2019,141(2):195-207
Photosynthesis Research - Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control... 相似文献
19.
Purified 125I-labeled 33-kDa protein binds to calcium-washed photosystem II preparations at high-affinity and low-affinity binding sites. Filling 70% of the high-affinity site with 33-kDa protein induces 63% of the maximum achievable reconstitution of O2-evolving activity. When N-succinimidyl [(4-azidophenyl)dithio]propionate modified 33-kDa protein was reconstituted into Ca(II)-washed membranes under conditions that primarily filled the high-affinity site and then cross-linked to adjacent proteins by illumination of the photoaffinity label, a cross-linked protein complex was formed that could be solubilized from the membranes with sodium dodecyl sulfate. The protein complex consisted of 22-, 24-, 26-, 28-, 29-, and 31-kDa proteins cross-linked to the 33-kDa protein and contained about 3-4 mol of Mn/mol of protein. 相似文献
20.
The activation of oxidized phosphoribulokinase either "free" or as part of a bi-enzyme complex by reduced thioredoxins during the enzyme reaction was studied. In the presence of reduced thioredoxin, the product of the reaction catalyzed by phosphoribulokinase within the bi-enzyme complex does not appear in a linear fashion. It follows a mono-exponential pattern that suggests a slow dissociation process of the bi-enzyme complex in the assay cuvette. A plot of the steady state of product appearance against thioredoxin concentration gave a sigmoid curve. On the basis of our experimental results, we propose a minimum model of the activation of phosphoribulokinase by reduced thioredoxin. Reduced thioredoxin may act on the phosphoribulokinase, either within the complex or in the dissociated metastable form. However, the time required to activate the enzyme as part of the complex is shorter (about 20 s) than that required to activate the dissociated form (about 10 min). This might be of physiological relevance, and we discuss the role of the interactions between phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase in the regulation of the Calvin cycle. 相似文献