首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recous  S.  Fresneau  C.  Faurie  G.  Mary  B. 《Plant and Soil》1988,112(2):205-214
Labelled urea or ammonium nitrate was applied to winter wheat growing on a loamy soil in Northern France. Two applications of fertilizer were given: 50 kg N ha–1 at tillering (early March) and 110 kg N ha–1 at the beginning of stem elongation (mid-April). The kinetics of urea hydrolysis, nitrification of ammonium and the disappearance of inorganic nitrogen were followed at frequent intervals. Inorganic nitrogen soon disappeared, mainly immobilized by soil microflora and absorbed by the crop. Net immobilization of fertilizer N occured at a very similar rate for urea and ammonium nitrate. Maximum immobilization (16 kg N ha1) was found at harvest for the first dressing and at anthesis for the second dressing (23 kg N ha1). During the nitrification period, the labelled ammonium pool was immobilized two to three times faster than the labelled nitrate pool. No significant net15N remineralization was found during the growth cycle.The actual denitrification and volatilization losses were probably more important than indicated from calculations made by extrapolation of fluxes measured over short intervals. However microbial immobilization was the most important of the processes which compete with plant uptake for nitrogen.  相似文献   

2.
Variations in crop grain and soil N isotope composition (δ15N) in relation to liquid hog manure (δ15N of total N was +5.1‰), solid cattle manure (+7.9‰) and chemical fertilizer (+0.7‰ for urea and −1.9‰ for ammonium phosphate) applications, and control (no fertilizer application) were examined through a 4-year crop rotation under field conditions. Canola (Brassica napus), hull-less barley (Hordeum vulgare), wheat (Triticum aestivum), and canola were grown sequentially from 2000 (year 1) to 2003 (year 4). From year 2, hog manure or chemical fertilizers, but not cattle manure, treatments increased grain N concentrations over the control. Grain δ15N (+0.3 to +2.5‰) of crops applied with chemical fertilizers was lower than those in the other treatments, reflecting the effects of the N source with a lower δ15N, while the manure treatments tended to increase grain δ15N. The higher grain δ15N of crops applied with hog manure (+5.6 to +8.4‰) than those applied with cattle manure (+2.2 to +4.1‰) reflected the higher N availability of liquid hog manure (up to 70% as NH 4 + ) than solid cattle manure (99% organic N) and higher potentials for ammonia volatilization loss in hog manure rather than differences in manure δ15N signatures. Soil total- and extractable-N concentrations and δ15N tended to vary with the application of N sources with different N isotope composition and availability. Our study expanded the application of the δ15N technique for detecting N source (organic vs chemical) effects on N isotopic composition to field conditions and across a 4-year rotation, and revealed that N availability played a greater role than the δ15N signature of N sources in determining crop δ15N under the studied conditions. Section Editor: H. Lambers  相似文献   

3.
The fate of 15N-labelled ammonium fertilizer applied once to six-year-old field-grown kiwifruit (Actinidia deliciosa Hayward) vines was measured over three years. The three main treatments were nitrogen (N) applied singularly at 100 or 200 kg N ha–1 in early spring (two weeks before bud burst) or split with 100 kg N ha–1 (unlabelled) in early spring and 100 kg N ha–1 (15N-labelled) ten weeks later. All N treatments were applied to vines with a history of either 50 or 200 kg N ha–1 yr–1. For three years after 15n application, components of the vines and soil (0–600 mm depth) were sampled at harvest in late autumn and the N and 15N contents determined.By the first harvest, all plant uptake of 15N had occurred and this represented 48–53% of the 15N applied. There was no significant effect of current N fertilizer treatment or of N history on 15N recovery by vines. Removal of 15N in harvested fruit was small at 5–6% in the first year and 8% over 3 years. After 2–3 years, most plant 15N occurred in the roots and this component declined only slowly over time. In contrast, there was a large temporal decline in 15N in above-ground plant components due to the annual removal in leaf fall and pruning. An associated experiment showed that when 15N-labelled prunings and leaves were mulched and returned to the soil, only about 9% was recovered by plants within 2 years. Almost all remaining mulched material had been immobilised into the soil organic N.In all treatments, about 20% of the added 15N remained in soil at the first harvest. This was almost entirely in organic fractions (<0.4% in inorganic N) and mostly in the surface 150-mm layer. The 15N content in soil changed little over time (from 20 to 17% between the first and third harvests respectively) and indicated that most of the N had been immobilised into stable humus forms.  相似文献   

4.
Fate of urea-N in floodwater   总被引:2,自引:0,他引:2  
One day after application, urea-N remaining in the floodwater and determined as water-soluble N (urea-N + NH4 +-N) was used to calculate the potential N loss from lowland rice soils. Actual N loss calculated from 15N balance measurements using forced air exchange (airflow rate: 20 L min-1) in greenhouse pots. Conditions for variable potential N loss were created by manipulating the method of urea application and duration of presubmergence or by selecting soils with diverse cation exchange capacities (CEC). Potential N loss tended to be lower than actual N loss; the differences were, however, nonsignificant. The method of urea application that led to the lowest potential N loss from a Guthrie silty clay loam (Typic Fragiaquult) also led to the least 15N loss and vice-versa (r=0.99**). Duration of presubmergence did not alter the relationship between potential and actual N loss although it influenced the rate of urea hydrolysis in floodwater. The primary depencence of actual N loss on water-soluble N was maintained in soils differing in CEC (r=0.83**). The association between potential and actual N loss was closer for high-CEC soils ( 20 cmol [+] kg-1 soil, r=0.91**) than for low-CEC soils (<20 cmol [+] kg-1 soil, r=0.85**). Ammonia volatilization could be more closely predicted by potential N loss than could apparent denitrification.The results of this study suggest that potential N loss calculated from one-time determination of water-soluble N in floodwater can be a good index of actual N loss from flooded, puddled rice soils. Notable exceptions are to be expected for soils in which water-soluble N gets lost from floodwater either before (soils with fast urea hydrolysis in floodwater) or after (soils with steady leaching) determination of potential N loss.  相似文献   

5.
A pulse dilution 15N technique was used in the field to determine the effect of the ammonium to nitrate ratio in a fertilizer application on the uptake of ammonium and nitrate by ryegrass and on gross rates of mineralization and nitrification. Two experiments were performed, corresponding approximately to the first and second cuts of grass. Where no substantial recent immobilization of inorganic nitrogen had occurred, mineralization was insensitive to the form of nitrogen applied, ranging from 2.1–2.6 kg N ha-1 d-1. The immobilization of ammonium increased as the proportion of ammonium in the application increased. In the second experiment there was evidence that high rates of immobilization in the first experiment were associated with high rates of mineralization in the second. The implication was that some nitrogen immobilized in the first experiment was re-mineralized during the second. Whether this was nitrogen taken up, stored in roots and released following defoliation was not clear. Nitrification rates in this soil were low (0.1–0.63 kg N ha-1 d-1), and as a result, varying the ratio of ammonium to nitrate applied markedly altered the relative uptake of ammonium and nitrate. In the first experiment, where temperatures were low, preferential uptake of ammonium occurred, but where >90% of the uptake was as ammonium, a reduction in yield and nitrogen uptake was observed. In the second experiment, where temperatures and growth rates were higher, the proportion of ammonium to nitrate taken up had no effect on yield or nitrogen uptake.  相似文献   

6.
Thomsen  Ingrid K.  Kjellerup  Viggo  Jensen  Bendt 《Plant and Soil》1997,197(2):233-239
Two animal slurries either labelled with 15N in the urine or in the faeces fraction, were produced by feeding a sheep with unlabelled and 15N-labelled hay and collecting faeces and urine separately. The slurries were applied (12 g total N -2) to a coarse sand and a sandy loam soil confined in lysimeters and growing spring barley (Hordeum vulgare L). Reference lysimeters without slurry were supplied with15 NH4 15NO3 corresponding to the inorganic N applied with the slurries (6 g N m-2). In the second year, all lysimeters received unlabelled mineral fertilizer (6 g N m-2) and grew spring barley. N harvested in the two crops (grain + straw) and the loss of nitrate by leaching were determined. 15N in the urine fraction was less available for crop uptake than mineral fertilizer 15N. The first barley crop on the sandy loam removed 49% of the 15N applied in mineral fertilizer and 36% of that applied with urine. The availability of fertilizer 15N (36%) and urine15 N (32%) differed less on the coarse sand. Of the15 N added with the faeces fraction, 12–14% was taken up by the barley crop on the two soils. N mineralized from faeces compensated for the reduced availability of urine N providing a similar or higher crop N uptake in manured lysimeters compared with mineral fertilized ones.About half of the total N uptake in the first crop originated from the N applied either as slurry or mineral fertilizer. The remaining N was derived from the soil N pool. Substantially smaller but similar proportions of15 N from faeces, urine and fertilizer were found in the second crop. The similar recoveries indicated a slow mineralization rate of the residual faeces N since more faeces was left in the soil after the first crop.More N was lost by leaching from manured lysimeters but as a percentage of N applied, losses were similar to those from mineral fertilizer. During the first and second winter, 3–5% and 1–3%, respectively, of the 15N in slurry and mineral fertilizer was leached as nitrate. Thus slurry N applied in spring just before sowing did not appear to be more prone to loss by nitrate leaching than N given in mineral fertilizer. Slurry N accounted for a higher proportion of the N leached, however, because more N was added in this treatment.  相似文献   

7.
Summary Genotypes of sorghum and millet have previously been found to have different amounts of root-associated acetylene reduction activity. Isotope dilution experiments using15N have been carried out to evaluate the amount of nitrogen fixed by bacteria which is incorporated into the different genotypes when grown in vermiculite in the glasshouse. Isotope dilution result indicated that the content of shoot nitrogen derived from biological nitrogen fixation varied by up to 27% between sorghum genotypes and 17% between millet genotypes. Considerable isotope dilution also resulted from uptake of non-exchangeable-N (as NH 4 + ) in the vermiculite. It is possible that the genotypic differences in isotope dilution may reflect differences in the ability of plants to take up non-exchangeable-N, and that vermicultite is therefore an unsuitable growth medium for such studies.Published as Journal Article No. 493 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru P.O., Andhra Pradesh 502 324, India.  相似文献   

8.
Vos  G. J. M.  Bergevoet  I. M. J.  Védy  J. C.  Neyroud  J. A. 《Plant and Soil》1994,160(2):201-213
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer. The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot. However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with the soil ammonium concentration.  相似文献   

9.
The principal landraces of the pearl millet,Pennisetum glaucum (L.)R. Br., from Niger have been analysed for their genetic structure at eight enzyme systems coded by 12 loci and 46 alleles. Three groups have been identified: (1) early-maturing pearl millets, cultivated between 8° and 13°E longitude, including the oases from Aïr mountains; (2) early-maturing millets situated more to the west (1° and 8°E longitude), and (3) late-maturing millets. Group 1 shows the highest isozyme diversity. The differences between the accessions represent 8.8% of the total diversity and the differences between the three groups 4.5%. The accessions from groups 1 and 3 are the least distant. When considering pearl millets from areas outside Niger, the chadian and sudanese millets are enzymatically close to the Niger group 1. The pearl millets from Niger group 2 are close to millets from east Mali, northern Burkina Faso and Senegal, and the Niger group 3 to the late-maturing millets group from West Africa. This study should help breeders to select the landraces for improvement and parents for crosses from cultivars of Niger and introduced germ plasm.  相似文献   

10.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

11.
选用15N同位素标记的新型回收塑料包膜控释肥和大颗粒尿素,采用池栽试验研究夏玉米-冬小麦轮作体系中肥料氮的去向及利用率。结果表明,整个轮作体系中,控释肥处理(PCU)作物吸收的肥料氮为241.03 kg/hm,高于尿素处理(Urea)的211.02 kg/hm。控释肥处理施用的肥料氮主要残留在0~40 cm土层,而尿素处理则残留在0~60 cm土层,控释肥延缓了肥料氮向土壤深层迁移的趋势。在夏玉米和冬小麦轮作体系中,控释肥处理的氮肥利用率(32.86%,32.47%)高于尿素处理(28.23%,30.16%)。在冬小麦季,控释肥处理损失率相比尿素处理从36.07% 降至28.75%,而夏玉米季,控释肥处理损失率相比尿素处理从37.17%降至29.50%。玉米季控释肥处理与尿素处理差异不显著,但在冬小麦季控释肥处理的产量显著高于尿素处理。因此,在玉米和小麦整个生长季,新型回收塑料包膜控释肥的养分释放与作物养分需求吻合,既提高氮肥利用率,也降低了肥料氮的损失。  相似文献   

12.
Summary 15N tracer was used to detect the extent to which nitrogen of appliedAzolla caroliniana, Anabaena variabilis andNostoc muscorum was available for assimilation by the growing rice plants in pots under 4 cm flood water for 60 days. The rate of release of nitrogen from the above biofertilizers, the amount of nitrogen remaining in the soils and the amount that was lost from the soils during this period were also examined. Previously15N-labelled biomass of Azolla, Anabaena and Nostoc to provide 40 mg N was mixed thoroughly with 0.5 kg silt loam Bangladesh soil (Sonatola series) in each of three pots used for a single treatment. Each pot received four 16 days old IR8 rice seedlings. A parallet set of experiments was conducted without rice plants.It was found that nitrogen uptake in the rice plants was increased by 91, 176 and 215% on using Azolla, Anabaena and Nostoc which resulted in increased total dry matter yields (shoot plus root) of 74, 105 and 125%, respectively. Of the total15N applied at the start, 26, 49 and 53% was released from Azolla, Anabaena and Nostoc; about 7, 14 and 13% was lost by denitrification and 74, 51 and 47% remained in the soils as the undecomposed part of the biofertilizers, respeciively, after 60 days. Of 15.76, 22.72 and 25.92 mg N assimilated by the rice plants, 48, 61 and 62% was supplied by Azolla, Anabaena and Nostoc, respectively. The rest was obtained from the soil used.In the absence of the rice plants 30, 43 and 45% of applied15N of Azolla, Anabaena and Nostoc was released, respectively, in 60 days of which 93–96% was lost as N2 through denitrification.  相似文献   

13.
Effects of fertigation scheme on N uptake and N use efficiency in cotton   总被引:7,自引:0,他引:7  
While fertigation can increase fertilizer use efficiency, there is an uncertainly as to whether the fertilizer should be introduced at the beginning of the irrigation or at the end, or introduced during irrigation. Our objective was to determine the effect of different fertigation schemes on nitrogen (N) uptake and N use efficiency (NUE) in cotton plants. A pot experiment was conducted under greenhouse conditions in year 2004 and 2005. According to the application timing of nitrogen (N) fertilizer solution and water (W) involved in an irrigation cycle, four nitrogen fertigation schemes [nitrogen applied at the beginning of the irrigation cycle (N–W), nitrogen applied at the end of the irrigation cycle (W–N), nitrogen applied in the middle of the irrigation cycle (W–N–W) and nitrogen applied throughout the irrigation cycle (N&W)] were employed in a completely randomized design with four replications. Cotton was grown in plastic containers with a volume of 84 l, which were filled with a clay loam soil and fertilized with 6.4 g of N per pot as unlabeled and 15N-labeled urea for 2004 and 2005, respectively. Plant total dry matter (DM) and N content in N–W was significantly higher than in N&W in both seasons, but these were not consistent for W–N and W–N–W treatments. In year 2005, a significantly higher nitrogen derived from fertilizer (NDFF) for the whole plant was found in W–N and N–W than that in W–N–W and N&W. Fertigation scheme had a consistent effect on total NUE: N–W had the highest NUE for the whole plant, but this was not significantly different from W–N. Treatments W–N and W–N–W had similar total NUE, and N&W had the lowest total NUE. After harvesting, the total residual fertilizer N in the soil was highest in W–N, lowest in N–W, but this was not significantly different from N&W and W–N–W treatments. Total residual NO3–N in the soil in N&W and W–N treatments was 20.7 and 21.2% higher than that in N–W, respectively. The total 15N recovery was not statistically significant between the four fertigation schemes. In this study, the fertigation scheme N–W (nitrogen applied at the beginning of an irrigation cycle) increased DM accumulation, N uptake and NUE of cotton. This study indicates that Nitrogen application at the beginning of an irrigation cycle has an advantage on N uptake and NUE of cotton. Therefore, NUE could be enhanced by optimizing fertilization schemes with drip irrigation.  相似文献   

14.
Foliage from a mature stand of Scots pine (Pinus sylvestris L.) receiving increasing doses of ammonium nitrate and urea nitrogen was assayed during the five subsequent growing seasons for total N concentration and 15N abundance. The aim of the study was to examine the potential of the 15N technique to provide estimates on fertilizer N recovery and its fate in the ecosystem. The 15N abundance in the foliage increased in proportion to the dose of fertilizer application. This was generally owing to the fact that the 15N of the fertilizer N was significantly higher than that in the soil inorganic-N pool, as well as in the needle biomass of the Scots pine trees on the nonfertilized plots. Due to 15N isotope discrimination occurring during N transformations in soil the relationship was however not very close. Calculations based on the principle of isotope dilution yielded only rough and, in some cases, even misleading estimates of the fraction of the fertilizer-derived nitrogen (Ndff) in the needles. This was especially the case for the urea-N, which undergoes significant isotopic fractionation during the process of ammonia volatilization and possibly microbial NH4 + assimilation in soil. Over five growing seasons, foliar total N concentration peaked at the end of the second season while the 15N abundance continued to increase. Although large methodological errors may be involved when interpreting natural 15N abundance, the measurement of 15N seems to provide semi-quantitative information about fertilizer N accumulation and transformation processes in coniferous ecosystems. A better understanding of the tree and soil processes causing isotopic fractionation is a prerequisite for correct interpretation of 15N data.  相似文献   

15.
Glendining  M.J.  Poulton  P.R.  Powlson  D.S.  Jenkinson  D.S. 《Plant and Soil》1997,195(1):83-98
An experiment with 15N-labelled fertilizer was superimposed on the Rothamsted Hoosfield Spring Barley Experiment, started in 1852. Labelled 15NH4 15NO3 was applied in spring at (nominal) rates of 0, 48, 96 and 144 kg N ha-1. The labelled fertilizer was applied to microplots located within four treatments of the original experiment: that receiving farmyard manure (FYM) annually, that receiving inorganic nutrients (PK) annually and to two that were deficient in nutrients: applications were made in two successive years, but to different areas within these original treatments. Maximum yields in 1986 (7.1 t grain ha-1) were a little greater than in 1987. In 1987, microplots on the FYM and PK treatments gave similar yields, provided enough fertilizer N was applied, but in 1986 yields on the PK treatment were always less than those on the FYM treatment, no matter how much fertilizer N was applied. In plots with adequate crop nutrients, about 51% of the labelled N was present in above-ground crop and weed at harvest, about 30% remained in the top 70 cm of soil (mostly in the 0–23 cm layer) and about 19% was unaccounted for, all irrespective of the rate of N application and of the quantity of inorganic N in the soil at the time of application. Less than 4% of the added fertilizer N was present in inorganic form in the soil at harvest, confirming results from comparable experiments with autumn-sown cereals in south-east England. Thus, in this experiment there is no evidence that a spring-sown cereal is more likely to leave unused fertilizer in the soil than an autumn-sown one. With trace applications (ca. 2 kg N ha-1) more labelled N was retained in the soil and less was in the above-ground crop. Where P and K were deficient, yields were depressed, a smaller proportion of the labelled fertilizer N was present in the above-ground crop at harvest and more remained in the soil.Although the percentage uptake of labelled N was similar across the range of fertilizer N applications, the uptake of total N fell off at the higher N rates, particularly on the FYM treatment. This was reflected in the appearance of a negative Added Nitrogen Interaction (ANI) at the highest rate of application. Fertilizer N blocked the uptake of soil N, particularly from below 23 cm, once the capacity of the crop to take up N was exceeded. Denitrification and leaching were almost certainly insufficient to account for the 19% loss of spring-added N across the whole range of N applications and other loss processes must also have contributed.  相似文献   

16.
To investigate the relationship between the timing of fertiliser N applications and the N use efficiency of wheat, three field experiments with 15N were set up on winter wheat, on three different soils in France. Different crop N demands on the day of fertiliser application were obtained by varying either crop densities or date of fertiliser application. Labelled 15NH4 15NO3 was applied at tillering and during stem elongation. The 15N recovered from plant and soil at different dates after 15N addition and at maturity of wheat was measured. The fate of fertiliser N was rapidly determined, most of the fertiliser N accumulated in the wheat at maturity having been taken up within a few days of application. 15N recovery by the crop at final harvest (%) varied greatly (19–55% N applied) according to crop density, soil type and date of application. It was linearly related to the instantaneous crop growth rate calculated at the day of 15N application. The amount of fertiliser N immobilised in the soil was constant at 20 kg N ha−1, for all soil types and crop densities. Because residual mineral 15N in the soil at harvest was negligible and immobilisation was constant, the level of total 15N measured in the different N pools (soil+plant) reflected the% 15N uptake by the plant. There was consequently a negative linear relationship between the percentage of 15N not recovered for measurement, and crop growth rate (i.e. crop N demand) at date of fertiliser application. These results suggest that crop N demand at the time of N application determines the ability of the crop to compete for N with other processes, and may be a major factor determining the division of N between soil and crop. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

18.
Utilising the 15N dilution technique the relationship between the proportion of N derived from N2 fixation and relative abundance of ureides in xylem sap was evaluated for Phaseolus vulgaris L. cv. Mokcham during vegetative and reproductive development. In order to establish calibration curves for time integrated estimates of N2 fixation, plants were raised in sand culture during the dry season in northern Thailand and continuously supplied with a N-free nutrient solution or the same solution amended with 0, 3, 6 or 9 mol m–3 nitrate. Large changes in plant dependence on N2 fixation were concomitantly reflected by corresponding alterations in N solutes in xylem sap. Regression analyses of the data suggested high correlations between relative ureide content and N2 fixation, but different slopes and line intercepts indicated the requirement for the use of calibration curves established for different phases of the development of the plant. Largest age related differences were noted between vegetative and reproductive development. Judging from 95% confidence limits, utilisation of appropriate calibrations can reduce errors of the technique to close to ±5%.A second experiment, involving similarly cultivated plants exposed to different sources of mineral N, indicated an effect of ammonium on xylem sap composition. This implies that calibrations, in which N2 fixation is regulated only by applications of various concentrations of nitrate, may lead to errors in situations where a major proportion of the plant available soil nitrogen fraction is present in the form of ammonium.  相似文献   

19.
Harmsen  K.  Moraghan  J. T. 《Plant and Soil》1988,105(1):55-67
In an experiment with sorghum on a medium deep red soil (Udic Rhodustalf) at Patancheru, India, where15N-labeled urea was applied at different rates during the 1981 rainy season, the apparent (ARF) and isotope recovery fractions (15NRF) were appreciably different, particularly at lower rates of fertilizer application. The fertilizer rates were corrected for losses of fertilizer nitrogen, that were estimated from the differences in the amounts of15N recovered in the soil and the crop, and the known amounts of15N applied. Introducing these ‘effective’ fertilizer rates, the apparent discrepancy between ARF and15NRF could be explained if it were assumed that the15N immobilized in the organic soil fraction was not remineralized during the course of the growing season. In the difference method, the equivalent amount of nitrogen at natural abundance released in exchange for fertilizer nitrogen (5 atom % xs15N) immobilized in the organic nitrogen fraction is treated as ‘fertilizer nitrogen’, since no distinction is made between14N and15N. In the isotope-dilution method, the nitrogen at natural abundance mineralized during biological interchange is not considered fertilizer nitrogen, and therefore the assumed effective amount of fertilizer nitrogen available to the crop is less than in the difference method.  相似文献   

20.
15N-labelled ammonium nitrate was applied to spring barley growing on a Cambisol soil in western Switzerland. Immobilization, plant uptake and disappearance of inorganic nitrogen were followed at frequent intervals. Fertilizer nitrogen disappeared shortly after its application, mainly through immobilization by soil microorganisms and absorption by the crop. Some of the added nitrogen was probably denitrified as a result of humid conditions during the first days after fertilizer application. At the end of the growing season, 31% of the added nitrogen was recovered from the aerial barley plants, and 56% was immobilized by microorganisms. Most of the fertilizer nitrogen not used by the crop was immobilized in the upper 0–30 cm soil layer. This prevented downward movement of nitrate and limited nitrogen losses. Fertilizer efficiency was mainly determined by the competition between crop uptake and microbial immobilization. Careful consideration of the time of fertilization, taking into account plant growth and weather conditions, can result in an increase in fertilizer efficiency and minimal pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号