首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
口服给药是药物递送系统中的优选途径。然而,在通过胃肠道时,肠细胞的低渗透性经常会阻碍药物的有效递送。包囊药物能够解决这一问题的关键,取决于其中的细胞侵袭性靶向基团包裹的纳米颗粒系统。这种药物递送系统的侵入特性是由细菌侵袭素的关键成分提供,这些成分具有快速调节药物穿越肠细胞的作用,从而促进宿主细胞对药物的有效吸收。此综述重点阐述细菌侵袭系统,对合适的侵袭素分别从功能和分子结构、作为靶向药物的相对价值以及在使用过程中可能存在的误区依次进行探讨。此外,对口服给药方法的改进和未来前景也进行了讨论。  相似文献   

3.
The apical brush border membrane (BBM) of intestinal epithelial cells forms a highly structured and dynamic environmental interface that serves to regulate cellular physiology and block invasion by intestinal microbes and their products. How the BBM dynamically responds to pathogenic and commensal bacterial signals can define intestinal homeostasis and immune function. We previously found that in model intestinal epithelium, the conversion of apical membrane sphingomyelin to ceramide by exogenous bacterial sphingomyelinase (SMase) protected against the endocytosis and toxicity of cholera toxin. Here we elucidate a mechanism of action by showing that SMase induces a dramatic, reversible, RhoA-dependent alteration of the apical cortical F-actin network. Accumulation of apical membrane ceramide is necessary and sufficient to induce the actin phenotype, and this coincides with altered membrane structure and augmented innate immune function as evidenced by resistance to invasion by Salmonella.  相似文献   

4.
Human intestinal epithelial cells secrete an array of chemokines known to signal the trafficking of neutrophils and monocytes important in innate mucosal immunity. We hypothesized that intestinal epithelium may also have the capacity to play a role in signaling host adaptive immunity. The CC chemokine macrophage inflammatory protein (MIP)-3alpha/CCL20 is chemotactic for immature dendritic cells and CD45RO(+) T cells that are important components of the host adaptive immune system. In these studies, we demonstrate the widespread production and regulated expression of MIP-3alpha by human intestinal epithelium. Several intestinal epithelial cell lines were shown to constitutively express MIP-3alpha mRNA. Moreover, MIP-3alpha mRNA expression and protein production were upregulated by stimulation of intestinal epithelial cells with the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-1alpha or in response to infection with the enteric bacterial pathogens Salmonella or enteroinvasive Escherichia coli. In addition, MIP-3alpha was shown to function as a nuclear factor-kappaB target gene. In vitro findings were paralleled in vivo by increased expression of MIP-3alpha in the epithelium of cytokine-stimulated or bacteria-infected human intestinal xenografts and in the epithelium of inflamed human colon. Mucosal T cells, other mucosal mononuclear cells, and intestinal epithelial cells expressed CCR6, the cognate receptor for MIP-3alpha. The constitutive and regulated expression of MIP-3alpha by human intestinal epithelium is consistent with a role for epithelial cell-produced MIP-3alpha in modulating mucosal adaptive immune responses.  相似文献   

5.
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical “button” because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.  相似文献   

6.
姚志超  白帅  张宏宇 《微生物学报》2018,58(6):1036-1048
在长期的进化过程中,昆虫形成了独特的肠道防御系统,主要由物理屏障和免疫系统共同作用来抵御外来微生物的入侵。如大部分后生动物一样,昆虫肠道上皮细胞无时无刻不与微生物接触,其种类从有益的共生菌、随食物进入的微生物到影响宿主生命的病原菌。在这样一种复杂的环境中,为了实现防御肠道病原微生物的同时又能维持共生微生物稳定的目的,宿主肠道上皮细胞必须在免疫应激和免疫耐受之间保持一种稳态平衡。Duox-ROS免疫系统和免疫缺陷(immune deficiency,Imd)信号通路作为肠道免疫反应的基本途径,必然参与调节此过程。本文从昆虫肠道防御组成、肠道免疫信号通路作用分子机制以及肠道免疫系统在肠道微生物群落稳态维持中的作用的最新研究进展进行综述。  相似文献   

7.
The intestinal epithelium has emerged as one of the links between the innate and adaptive immune systems. Novel roles have been elucidated for its participation in antigen uptake and presentation, costimulatory signaling, and intestinal homeostasis. Its concomitant interaction with immune cells and commensal flora demonstrates the epithelium's multifaceted responsibility in protecting against intestinal pathology while maintaining immune competence. Its functional capacity is now more clearly defined in disease states such as celiac disease, Crohn's disease, and ulcerative colitis and in maintaining intestinal integrity through toll-like receptor signaling pathways.  相似文献   

8.
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.  相似文献   

9.
Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo   总被引:7,自引:0,他引:7  
Flagellin is secreted by many enteric bacteria and, upon reaching the basolateral membrane of the intestinal epithelium, activates Toll-like receptor 5-mediated innate immune signaling pathways. We hypothesized that any flagellin that gets beyond the epithelium might also regulate cells of the adaptive immune system. Here we demonstrate that the clonal expansion of naive DO11.10 CD4 T cells in response to OVA peptide (323-339) was enhanced 3- to 10-fold in the presence of purified bacterial flagellin in vivo. OVA-specific CD4 T cells were also shown to have undergone more cell division in vivo if flagellin was coinjected with OVA. Flagellin administration increased the expression of B7-1 on splenic dendritic cells, and coinjection of CTLA4-Ig, which is known to block B7 function in vivo, completely ablated the adjuvant effect on CD4 T cells. Therefore, a conserved bacterial protein produced by many intestinal microbes can modulate CD4 T cell activation in vivo. Such an adjuvant effect for flagellin has important implications for vaccine development and the generation of CD4 T cell responses to enteric bacteria.  相似文献   

10.
The intestinal epithelium acts as a mucosal barrier by varying their signals to immune cells within the intestine. To observe the cross talk between intestinal epithelium and macrophages, we establish a Caco-2-THP-1 co-culture system. Using this co-culture system, we suggested that paracrine factors of intestinal epithelium increased the phagocytic capacity of intestinal monocytes/macrophages to be ready for immune and inflammatory responses.  相似文献   

11.
When Shigella infect the intestinal epithelium, they deliver several effectors through the type III secretion system (T3SS) into the surrounding space and directly into the host-cell cytoplasm, where they can mimic and usurp host cellular functions or subvert host-cell signalling pathways and the immune response. Although bacterial strategies and mechanisms of infection vary greatly, recent studies of Shigella effectors have revealed that Shigella possess a highly evolved strategy for infection.  相似文献   

12.
The intestinal epithelium is the largest surface area of the body in contact with the external environment. This specialized single cell layer is constantly renewed and is a physical barrier that separates intestinal microbiota from underlying tissues, preventing bacterial infiltration and subsequent inflammation. Specialized secretory epithelial cell types such as Paneth cells and goblet cells limit bacterial adhesion and infiltration by secreting antibacterial peptides and mucins, respectively. Rapid cell renewal coincides with apical exfoliation of 'old' enterocytes without compromising epithelial barrier integrity. When the intestinal epithelium is inflamed barrier integrity can be compromised, due to uncontrolled death of enterocytes allowing bacterial infiltration. This review discusses the different mechanisms which regulate or affect intestinal barrier integrity under homeostatic and inflammatory conditions.  相似文献   

13.
Intestinal organoids were established as an ex vivo model of the intestinal epithelium. We investigated whether organoids resemble the intestinal epithelium in their microRNA (miRNA) profiles. Total RNA samples were obtained from crypt and villus fractions in murine intestine and from cultured organoids. Microarray analysis showed that organoids largely resembled intestinal epithelial cells in their miRNA profiles. In silico prediction followed by qRT-PCR suggested that six genes are regulated by corresponding miRNAs along the crypt-villus axis, suggesting miRNA regulation of epithelial cell renewal in the intestine. However, such expression patterns of miRNAs and their target mRNAs were not reproduced during organoids maturation. This might be due to lack of luminal factors and endocrine, nervous, and immune systems in organoids and different cell populations between in vivo epithelium and organoids. Nevertheless, we propose that intestinal organoids provide a useful in vitro model to investigate miRNA expression in intestinal epithelial cells.  相似文献   

14.
Bacterial translocation from the intestines   总被引:3,自引:0,他引:3  
Bacterial translocation is defined as the passage of viable bacteria from the gastrointestinal (GI) tract through the mucosal epithelium to other sites, such as the mesenteric lymph nodes, spleen, liver and blood. This paper reviews results from animal models utilized to obtain information concerning the defense mechanisms operating in the healthy host to confine bacteria to the GI tract. Gnotobiotic and antibiotic-decontaminated mice colonized with particular bacteria demonstrated that the indigenous GI flora maintains an ecologic equilibrium to prevent intestinal bacterial overgrowth and translocation from the GI tract. Studies with athymic (nu/nu) mice, thymus-grafted (nu/nu) mice, neonatally thymectomized mice, and mice injected with immunosuppressive agents demonstrated that the host immune system is another defense mechanism inhibiting bacterial translocation from the GI tract. Ricinoleic acid given orally to mice disrupted the intestinal epithelial barrier allowing indigenous bacteria to translocate from the GI tract. Thus, bacterial translocation from the GI tract of healthy adult mice is inhibited by: (a) an intact intestinal epithelial barrier, (b) the host immune defense system, and (c) an indigenous GI flora maintaining ecological equilibrium to prevent bacterial overgrowth. Deficiencies in host defense mechanisms act synergistically to promote bacterial translocation from the GI tract as demonstrated by animal models with multiple alterations in host defenses. Bacterial translocation occurred to a greater degree in mice with streptozotocin-induced diabetes, mice receiving nonlethal thermal injury, and mice receiving the combination of an immunosuppressive agent plus an oral antibiotic than in mice with only a primary alteration in host defenses. The study of bacterial translocation in these complex models suggests that opportunistic infections from the GI tract occur in discrete stages. In the healthy adult animal, bacterial translocation from the GI tract either does not occur or occurs at a very low level and the host immune defenses eliminate the translocating bacteria. Bacterial translocation does take place if one of the host defense mechanisms is compromised, such as a deficiency in the immune response, bacterial overgrowth in the intestines, or an increase in the permeability of the intestinal barrier. In this first stage, the bacteria usually translocate in low numbers to the mesenteric lymph node, and sometimes spleen or liver, but do not multiply and spread systemically.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Enteric pathogen–host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane‐bound toll‐like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro‐inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase‐1 and are regulated by related caspases, such as caspase‐11, ‐4, ‐5 and ‐8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome‐mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.  相似文献   

16.
Roots and bark from plants belonging to genus Salacia of the family Hippocrateaceae (Salacia reticulata, Salacia oblonga, etc.) have been used for traditional Ayurvedic medicine, particularly for the treatment of diabetes. In our study, we evaluated the gene expression profiles in the small intestinal epithelium of rats that were given a Salacia plant extract to gain insight into its effects on the small intestine. In detail, DNA microarray analysis was performed to evaluate the gene expression profiles in the rat ileal epithelium. The intestinal bacterial flora was also studied using T-RFLP (Nagashima method) in these rats. Expressions of many immune-related genes, especially Th1-related genes associated with cell-mediated immunity, were found to increase in the small intestinal epithelium and the intestinal bacterial flora became similar to those in the case with Salacia plant extract administration. Our study thus revealed that Salacia plant extract exerts bioregulatory functions by boosting intestinal immunity.  相似文献   

17.
Peptidoglycan (PGN) is a potent immune adjuvant derived from bacterial cell walls. Previous investigations suggest that intestinal epithelium may absorb PGN from the lumen. Nonetheless, how PGN is taken up and crosses intestinal epithelium remains largely unclear. Here, we first characterized PGN transport in vitro using IEC‐18 and HT29‐CL19A cells, which represent less mature epithelial cells in intestinal crypts. With fluorescent microscopy, we visualized internalization of dual‐labeled PGN by enterocytes. Engulfed PGN was found to form a complex with PGN recognition protein‐3, which may facilitate delivering PGN in vivo. Utilizing electronic microscopy, we revealed that uptake of apical PGN across intestinal epithelial monolayers was involved in phagocytosis, multivesicular body formation, and exosome secretion. We also studied transport of PGN using the transwell system. Our data indicated that apically loaded PGN was exocytosed to the basolateral compartment with exosomes by HT29‐CL19A cells. The PGN‐contained basolateral exosome extracts induced macrophage activation. Through gavaging mice with labeled PGN, we found that luminal PGN was taken up by columnar epithelial cells in crypts of the small intestine. Furthermore, we showed that pre‐confluent immature but not post‐confluent mature C2BBe1 cells engulfed PGN via a toll‐like receptor 2‐dependent manner. Together, our findings suggest that (1) crypt‐based immature intestinal epithelial cells play an important role in transport of luminal PGN over the intestinal epithelium; and (2) luminal PGN is transcytosed across intestinal epithelia via a toll‐like receptor 2‐mediated phagocytosis‐multivesicular body‐exosome pathway. The absorbed PGN and its derivatives may facilitate maintenance of intestinal immune homeostasis. J. Cell. Physiol. 222: 658–668, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Leaky guts and lipid rafts   总被引:2,自引:0,他引:2  
The intestinal epithelium functions as a physical barrier separating luminal microorganisms from the underlying immune system. There is compelling evidence that several intestinal diseases are associated with the translocation of commensal bacteria across the epithelial barrier. Recent work has identified a novel mechanism by which normally non-invasive enteric bacteria breach the intestinal epithelium during periods of inflammation.  相似文献   

19.
20.
It has been shown previously that certain bacteria rapidly (3 h) up-regulated in vivo microfold cell (M cell)-mediated transport of Ag across the follicle-associated epithelium of intestinal Peyer's patch. Our aim was to determine whether soluble mediators secreted following host-bacteria interaction were involved in this event. A combination of proteomics and immunohistochemical analyses was used to identify molecules produced in the gut in response to bacterial challenge in vivo; their effects were then tested on human intestinal epithelial cells in vitro. Macrophage migration inhibitory factor (MIF) was the only cytokine produced rapidly after in vivo bacterial challenge by CD11c(+) cells located beneath the M cell-rich area of the follicle-associated epithelium of the Peyer's patch. Subsequently, in vitro experiments conducted using human Caco-2 cells showed that, within hours, MIF induced the appearance of cells that showed temperature-dependent transport of microparticles and M cell-specific bacterium Vibrio cholerae, and acquired biochemical features of M cells. Furthermore, using an established in vitro human M cell model, we showed that anti-MIF Ab blocked Raji B cell-mediated conversion of Caco-2 cells into Ag-sampling cells. Finally, we report that MIF(-/-) mice, in contrast to wild-type mice, failed to show increased M cell-mediated transport following in vivo bacterial challenge. These data show that MIF plays a role in M cell-mediated transport, and cross-talk between bacteria, gut epithelium, and immune system is instrumental in regulating key functions of the gut, including M cell-mediated Ag sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号