首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

2.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (k(D) 2.68 x 10(-7) M vs. 1.03 x 10(-6) M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

3.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (kD 2.68 × 10− 7 M vs. 1.03 × 10− 6 M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

4.
Lacticin 3147 is a two-peptide lantibiotic produced by Lactococcus lactis in which both peptides, LtnA1 and LtnA2, interact synergistically to produce antibiotic activities in the nanomolar concentration range; the individual peptides possess marginal (LtnA1) or no activity (LtnA2). We analysed the molecular basis for the synergism and found the cell wall precursor lipid II to play a crucial role as a target molecule. Tryptophan fluorescence measurements identified LtnA1, which is structurally similar to the lantibiotic mersacidin, as the lipid II binding component. However, LtnA1 on its own was not able to substantially inhibit cell wall biosynthesis in vitro; for full inhibition, LtnA2 was necessary. Both peptides together caused rapid K(+) leakage from intact cells; in model membranes supplemented with lipid II, the formation of defined pores with a diameter of 0.6 nm was observed. We propose a mode of action model in which LtnA1 first interacts specifically with lipid II in the outer leaflet of the bacterial cytoplasmic membrane. The resulting lipid II:LtnA1 complex is then able to recruit LtnA2 which leads to a high-affinity, three-component complex and subsequently inhibition of cell wall biosynthesis combined with pore formation.  相似文献   

5.
The antibiotic vancomycin—that binds lipid II in the bacterial cell membrane—was conjugated to a mono- and tetravalent mimic of the tris-histidine catalytic triad of metalloenzymes. Targeted hydrolysis by the conjugate was observed using model membranes containing lipid II, and in vitro MIC-values of the targeted mimic constructs could be modulated by Zn-ions.  相似文献   

6.
Lipid II is an essential cell-wall precursor required for the growth and replication of both Gram-positive and Gram-negative bacteria. Compounds that use lipid II to selectively target bacterial cells for destruction represent an important class of antibiotics. Clinically, vancomycin is the most important example of an antibiotic that operates in this manner. Despite being considered the 'antibiotic drug of last resort', significant bacterial resistance to vancomycin now manifests itself worldwide. In this paper we review recent progress made in understanding the lipid II-associated antibacterial characteristics of various naturally occurring compounds, with particular focus on the lantibiotic peptides.  相似文献   

7.
In the direct cell membrane penetration, arginine-rich cell-penetrating peptides are thought to penetrate into cells across the hydrophobic lipid membranes. To investigate the effect of the amphipathic property of arginine-rich peptide on the cell-penetrating ability, we designed a novel amphipathic cell-penetrating peptide, A2-17, and its derivative, A2-17KR, in which all lysine residues are substituted with arginine residues, based on the glycosaminoglycan binding region in the N-terminal α-helix bundle of human apolipoprotein E. Isothermal titration calorimetry showed that A2-17 variants have a strong ability to bind to heparin with high affinity. Circular dichroism and tryptophan fluorescence measurements demonstrated that A2-17 variants bind to lipid vesicles with a structural change from random coil to amphipathic α-helix, being inserted into the hydrophobic membrane interiors. Flow cytometric analysis and confocal laser scanning microscopy demonstrated the great cell penetration efficiency of A2-17 variants into CHO-K1 cells when incubated at low peptide concentrations (2 μM or less), suggesting that the increased amphipathicity with α-helix formation enhances the cell membrane penetration ability of arginine-rich peptides. Interestingly, A2-17KR exhibited lower efficiency of cell membrane penetration compared to A2-17 despite of their similar binding affinity to lipid membranes. Since high peptide concentrations (typically >10 μM) are usually prerequisite for efficient cell penetration of arginine-rich peptides, A2-17 is a unique amphipathic cell-penetrating peptide that exhibits an efficient cell penetration ability even at low peptide concentrations.  相似文献   

8.
Peptides terminating in -Lys-D-Ala-D-Ala, -Lys-D-Ala-L-Ala and -Lys-D-Ala-D-Lactate were covalently coupled via an N-terminal aminohexanoic acid linker to a self-assembled monolayer of HS(CH2)15CO2H on a thin gold film. Binding of the glycopeptide antibiotics vancomycin and chloroeremomycin to these surfaces was then measured using a surface plasmon resonance biosensor. Both antibiotics bound with micromolar affinity to the D-Ala-terminating surface and with millimolar affinity to the D-Lactate-terminating surface. Increasing density of these covalently attached peptides on the surface had no effect on the resultant affinities of either antibiotic for the surface. In contrast, when the lipid-anchored peptide N-alpha-docosanoyl-epsilon-acetyl-Lys-D-Ala-D-Ala was inserted into a supported lipid monolayer, the affinity of the strongly dimerizing antibiotic chloroeremomycin for the surface showed a dependence on ligand density. This was not the case with the weakly dimerizing antibiotic vancomycin. The lipid monolayer surface, which is a more realistic model of the surface of a bacterium, was thus better suited for the study of the cooperative binding interactions that occur between dimeric glycopeptide antibiotics and surface-bound ligands.  相似文献   

9.
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human α-defensins does not correlate with antibacterial killing. We further show that the α-defensin human neutrophil peptide-1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.  相似文献   

10.
A wide range of equilibrium and kinetic constants exist for the interaction of prothrombin and other coagulation factors with various model membranes from a variety of techniques. We have investigated the interaction of prothrombin with pure dioleoylphosphatidylcholine (DOPC) membranes and dioleoylphosphatidlyserine (DOPS)-containing membranes (DOPC:DOPS, 3:1) using surface plasmon resonance (SPR, with four different model membrane presentations) in addition to isotheral titration calorimetry (ITC, with suspensions of phospholipid vesicles) and ELISA methods. Using ITC, we found a simple low-affinity interaction with DOPC:DOPS membranes with a K D = 5.1 μM. However, ELISA methods using phospholipid bound to microtitre plates indicated a complex interaction with both DOPC:DOPS and DOPC membranes with K D values of 20 and 58 nM, respectively. An explanation for these discrepant results was developed from SPR studies. Using SPR with low levels of immobilised DOPC:DOPS, a high-affinity interaction with a K D of 18 nM was obtained. However, as phospholipid and prothrombin concentrations were increased, two distinct interactions could be discerned: (i) a kinetically slow, high-affinity interaction with K D in the 10?8 M range and (ii) a kinetically rapid, low-affinity interaction with K D in the 10?6 M range. This low affinity, rapidly equilibrating, interaction dominated in the presence of DOPS. Detailed SPR studies supported a heterogeneous binding model in agreement with ELISA data. The binding of prothrombin with phospholipid membranes is complex and the techniques used to measure binding will report K D values reflecting the mixture of complexes detected. Existing data suggest that the weaker rapid interaction between prothrombin and membranes is the most important in vivo when considering the activation of prothrombin at the cell surface.  相似文献   

11.
Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.  相似文献   

12.
Three oyster defensin variants (Cg-Defh1, Cg-Defh2, and Cg-Defm) were produced as recombinant peptides and characterized in terms of activities and mechanism of action. In agreement with their spectrum of activity almost specifically directed against Gram-positive bacteria, oyster defensins were shown here to be specific inhibitors of a bacterial biosynthesis pathway rather than mere membrane-active agents. Indeed, at lethal concentrations, the three defensins did not compromise Staphylococcus aureus membrane integrity but inhibited the cell wall biosynthesis as indicated by the accumulation of the UDP-N-acetylmuramyl-pentapeptide cell wall precursor. In addition, a combination of antagonization assays, thin layer chromatography, and surface plasmon resonance measurements showed that oyster defensins bind almost irreversibly to the lipid II peptidoglycan precursor, thereby inhibiting the cell wall biosynthesis. To our knowledge, this is the first detailed analysis of the mechanism of action of antibacterial defensins produced by invertebrates. Interestingly, the three defensins, which were chosen as representative of the oyster defensin molecular diversity, bound differentially to lipid II. This correlated with their differential antibacterial activities. From our experimental data and the analysis of oyster defensin sequence diversity, we propose that oyster defensin activity results from selective forces that have conserved residues involved in lipid II binding and diversified residues at the surface of oyster defensins that could improve electrostatic interactions with the bacterial membranes.  相似文献   

13.
Cationic antimicrobial peptides (CAPs) occur as important innate immunity agents in many organisms, including humans, and offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane lysis and eventually cell death. In this work, we studied the biophysical and microbiological characteristics of designed CAPs varying in hydrophobicity levels and charge distributions by a variety of biophysical and biochemical approaches, including in-tandem atomic force microscopy, attenuated total reflection-FTIR, CD spectroscopy, and SDS-PAGE. Peptide structural properties were correlated with their membrane-disruptive abilities and antimicrobial activities. In bacterial lipid model membranes, a time-dependent increase in aggregated β-strand-type structure in CAPs with relatively high hydrophobicity (such as KKKKKKALFALWLAFLA-NH(2)) was essentially absent in CAPs with lower hydrophobicity (such as KKKKKKAAFAAWAAFAA-NH(2)). Redistribution of positive charges by placing three Lys residues at both termini while maintaining identical sequences minimized self-aggregation above the dimer level. Peptides containing four Leu residues were destructive to mammalian model membranes, whereas those with corresponding Ala residues were not. This finding was mirrored in hemolysis studies in human erythrocytes, where Ala-only peptides displayed virtually no hemolysis up to 320 μM, but the four-Leu peptides induced 40-80% hemolysis at the same concentration range. All peptides studied displayed strong antimicrobial activity against Pseudomonas aeruginosa (minimum inhibitory concentrations of 4-32 μM). The overall findings suggest optimum routes to balancing peptide hydrophobicity and charge distribution that allow efficient penetration and disruption of the bacterial membranes without damage to mammalian (host) membranes.  相似文献   

14.
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.  相似文献   

15.
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction.  相似文献   

16.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

17.
Discovery of high-affinity peptide ligands for vancomycin   总被引:1,自引:0,他引:1  
Yao N  Wu CY  Xiao W  Lam KS 《Biopolymers》2008,90(3):421-432
Vancomycin, an important antibiotic against medically relevant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus, exerts its antibacterial effects by binding with moderate affinity to the C-terminal Lys-D-Ala-D-Ala motif (Kaa) of the bacterial cell wall peptide precursor. Essential for Kaa binding to vancomcyin is the free-carboxyl group on the terminal D-Ala in Kaa. In efforts to identify other Kaa-based peptides which bind vancomycin with higher affinity, we utilized our one-bead-one-compound (OBOC) combinatorial library approach, a method which has been widely used to discover highly specific ligands against various receptors. In standard OBOC peptide libraries, the C-terminal end of the synthesized peptide is tethered to a solid-support/resin, however, this study reports development of a synthetic strategy for generating OBOC peptide libraries with a free D-Ala-D-Ala carboxyl end. We screened these "OBOC inverted" peptide libraries against vancomycin, and discovered a series of peptide ligands with strong consensus, which bind vancomycin. To further optimize these ligands, two highly focused Kaa-containing OBOC combinatorial peptidomimetic libraries were designed, synthesized, and screened against vancomycin under more stringent conditions. Peptidomimetic ligands which bind vancomycin with higher affinity than Kaa were identified. The dissociation constant of one of these ligands, Lys(Ac)-HOCit-Glu-Cha-Lys(3,5-dihydroxybenzoyl)-D-Ala-D-Ala (9), as determined by surface plasmon resonance, was 1.03 microM, roughly a 50-fold improvement in affinity compared to Kaa (K(D) = 50 microM).  相似文献   

18.
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge‐region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress‐activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling d ‐alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.  相似文献   

19.
Specific drug-sensing systems that coordinate appropriate genetic responses assure the survival of microorganisms in the presence of antibiotics. We report on the development and application of a microtiter plate-based bioassay for the identification of antibiotics interfering with the lipid II cycle essential for peptidoglycan biosynthesis. A Bacillus subtilis reporter strain sensing specifically lipid II - interfering cell wall biosynthesis stress (T. Mascher, S.L. Zimmer, T.-A. Smith and J. Helmann, Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis; Antimicrob. Agents Chemother., Vol 48 (2004) pp. 2888-2896) was analyzed in the presence of different lantibiotics. We could show dose-dependent cell wall biosynthesis stress of reporter cells in response to the action of the lantibiotics subtilin produced by B. subtilis, epidermin and gallidermin of Staphylococcus epidermidis or S. gallinarum, respectively, in both, agar-plate and liquid culture-based assays. Surprisingly, also cinnamycin of Streptomyces cinnamoneus cinnamoneus), previously known to bind specifically to phosphatidylethanolamin of biological membranes, provoked strong cell wall biosynthetic stress. Our results show that our system can be used for screening purposes, for example to discover novel inhibitors of cell wall biosynthesis.  相似文献   

20.
Molecular dynamics simulations and free energy calculations have been used to examine in detail the mechanism by which a receptor molecule (the glycopeptide antibiotic vancomycin) recognizes and binds to a target molecule (lipid II) embedded within a membrane environment. The simulations show that the direct interaction of vancomycin with lipid II, as opposed to initial binding to the membrane, leads most readily to the formation of a stable complex. The recognition of lipid II by vancomycin occurred via the N-terminal amine group of vancomycin and the C-terminal carboxyl group of lipid II. Despite lying at the membrane-water interface, the interaction of vancomycin with lipid II was found to be essentially identical to that of soluble tripeptide analogs of lipid II (Ac-d-Ala-d-Ala; root mean-square deviation 0.11 nm). Free energy calculations also suggest that the relative binding affinity of vancomycin for native, resistant, and synthetic forms of membrane-bound lipid II was unaffected by the membrane environment. The effect of the dimerization of vancomycin on the binding of lipid II, the position of lipid II within a biological membrane, and the effect of the isoamylene tail of lipid II on membrane fluidity have also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号