首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (6-4) photoproduct lesion found in DNA after UV irradiation is repaired by germinating Neurospora crassa conidia. Wild-type Neurospora removes 80% of the (6-4) photoproduct in approximately 20 min and maximal repair is accomplished by 30 min with approximately 89% of the original lesions removed. Mutagen-sensitive Neurospora mutants belonging to the established excision repair epistasis group, UVS-2, are not defective in the removal of cyclobutane pyrimidine dimers. Furthermore, we find these mutants capable of removing (6-4) photoproducts from their DNA at a rate similar to wild type. Comparable kinetics are also observed in key members of the other two epistasis groups.  相似文献   

2.
A nuclease was purified from mitochondria of the mouse plasmacytoma cell line, MCP-11 which acts on single-stranded DNA endonucleolytically and appears to have no activity upon native DNA. It degrades unordered RNA somewhat more effectively than it does DNA. The enzyme activity and the major detectable polypeptide migrate to a position corresponding to an Mr of 37,400 on denaturing polyacrylamide gels; in its native form the activity has an S value of 4.7, which corresponds to a molecular weight of roughly 73,000. The single-strand DNase activity has a pH optimum near 7.5, requires a divalent cation and is inhibited by EDTA, phosphate, KCl and NaCl. The enzyme is remarkably similar to fungal mitochondrial enzymes whose absence in various mutants correlates with defective DNA repair and recombination. It reacts weakly with antibody to a form of such an enzyme from Neurospora crassa.  相似文献   

3.
The upr-1 mutant was one of the first mutagen-sensitive mutants to be isolated in Neurospora crassa. However, the function of the upr-1 gene has not yet been elucidated, although some genetic and biochemical data have been accumulated. In order to clone the upr-1 gene, we performed a chromosome walk from the mat locus, the closest genetic marker to upr-1 for which a molecular probe was available, towards the centromere, and a chromosomal contig of about 300-400 kb was constructed. Some of these clones complemented the temperature sensitivity of the un-16 mutation, which is located between mat and upr-1. The un-16 gene was sequenced, and localized in the MIPS Neurospora crassa genome database. We then searched the regions flanking un-16 for homologs of known DNA repair genes, and found a gene homologous to the REV3 gene of budding yeast. The phenotype of the upr-1 mutant is similar to that of the yeast rev3 mutant. An ncrev3 mutant carrying mutations in the N. crassa REV3 homolog was constructed using the RIP (repeat-induced point mutation) process. The spectrum of mutagen sensitivity of the ncrev3 mutant was similar to that of the upr-1 mutant. Complementation tests between the upr-1 and ncrev3 mutations indicated that the upr-1 gene is in fact identical to the ncrev3 gene. To clarify the role of the upr-1 gene in DNA repair, the frequency of MMS and 4NQO-induced mutations was assayed using the ad-8 reversion test. The upr-1 mutant was about 10 times less sensitive to both chemicals than the wild type. The expression level of the upr-1 gene is increased on exposure to UV irradiation in the uvs-2 and mus-8 mutants, which belong to postreplication repair group, as well as in the wild type. All these results suggest that the product of the upr-1 gene functions in damage-induced mutagenesis and DNA translesion synthesis in N. crassa.  相似文献   

4.
Damage-resistant DNA synthesis in eukaryotes   总被引:3,自引:0,他引:3  
  相似文献   

5.
Well characterized gamma-ray sensitive mutants of the fungus Neurospora crassa have been screened for characteristics analogous to those of cell lines derived from humans with the genetic disease, ataxia telangiectasia (AT). Two Neurospora mutants, uvs-6 and mus-9, show the AT cell line characteristics of gamma-ray and bleomycin sensitivity, and little or no repression of DNA synthesis following treatment with these agents. Normal human or Neurospora cells show an extensive biphasic DNA synthesis repression (to 50% of control) and when DNA synthesis is analyzed by alkaline sucrose gradient centrifugation, repression of DNA synthesis by low doses of gamma-radiation occurs primarily in low molecular weight (MW) DNA pieces in both organisms. In AT cells and the uvs-6 mutant, no repression in synthesis of low or higher MW DNA is seen at low doses, while the mus-9 mutant shows little repression of high MW DNA, but an intermediate level of low MW DNA synthesis. Both mutants have been shown previously to have an increased level of spontaneous chromosome instability as do AT lines. The uvs-6 and mus-9 mutations are known to be due to two different genes in two different epistatic groups. These results demonstrate that AT-like cellular characteristics can arise from defects in at least two and probably any of several genes, and that lower eukaryotes such as Neurospora can provide an inexpensive and useful model for AT while avoiding the problems inherent in using transformed cell lines.  相似文献   

6.
The mechanisms used by fungal cells to repair DNA damage have been subjects of intensive investigation for almost 50 years. As a result, the model yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae have led the way in yielding critical insights into the nature of the DNA damage response. At the same time, largely through the efforts of Etta Kafer, Hirokazu Inoue, and colleagues, a substantial collection of Aspergillus nidulans and Neurospora crassa DNA repair mutants has been identified and characterized in detail. As the analysis of these mutants continues and increasing amounts of annotated genome sequence become available, it is becoming readily apparent that the DNA damage response of filamentous fungi possesses several features that distinguish it from the model yeasts. These features are emphasized in this review, which describes the genes, regulatory networks, and processes that compose the fungal DNA damage response. Further characterization of this response will likely yield general insights that are applicable to animals and plants. Moreover, it may also become evident that the DNA damage response can be manipulated to control fungal growth.  相似文献   

7.
Well characterized γ-ray sensitive mutants of the fungus Neurospora crassa have been screened for characteristics analogous to those of cell lines derived from humans with the genetic disease, ataxia telagiectasia (AT). Two Neurospora mutants, uvs-6 and mus-9, show the AT cell line characterteristics of γ-ray and bleomycin sensitivity, and little or no repression of DNA synthesis following treatment with these agents. Norman human or Neurospora cells show an extensive biphasic DNA synthesis repression (to 50% of control) and when DNA synthesis is analyzed by alkaline gradient centrifugation, repression of DNA synthesis by low doses of γ-radiation occurs primarily in low molecular weight (MW) DNA pieces in both organisms. In AT cells and the uvs-6 mutant, no repression of low or higher MW DNA is seen at low doses, while the mus-9 mutant shows little repression of high MW DNA, but an intermediate level of low MW synthesis. Both mutants have been shown previously to have an increased level of spontaneous chromosome instability as do AT lines. The uvs-6 and mus-9 mutations are known to be due to two different genes in two different epistatic groups. These results demonstrate that AT-like cellular characteristics can arise from defects in at least two and probably any of several genes, and that lower eukaryotes such as Neurospora can provide an inexpensive and useful model for AT while avoiding the problems inherent in using transformed cell lines.  相似文献   

8.
H Yajima  M Takao  S Yasuhira  J H Zhao  C Ishii  H Inoue    A Yasui 《The EMBO journal》1995,14(10):2393-2399
Many eukaryotic organisms, including humans, remove ultraviolet (UV) damage from their genomes by the nucleotide excision repair pathway, which requires more than 10 separate protein factors. However, no nucleotide excision repair pathway has been found in the filamentous fungus Neurospora crassa. We have isolated a new eukaryotic DNA repair gene from N.crassa by its ability to complement UV-sensitive Escherichia coli cells. The gene is altered in a N.crassa mus-18 mutant and responsible for the exclusive sensitivity to UV of the mutant. Introduction of the wild-type mus-18 gene complements not only the mus-18 DNA repair defect of N.crassa, but also confers UV-resistance on various DNA repair-deficient mutants of Saccharomyces cerevisiae and a human xeroderma pigmentosum cell line. The cDNA encodes a protein of 74 kDa with no sequence similarity to other known repair enzymes. Recombinant mus-18 protein was purified from E.coli and found to be an endonuclease for UV-irradiated DNA. Both cyclobutane pyrimidine dimers and (6-4)photoproducts are cleaved at the sites immediately 5' to the damaged dipyrimidines in a magnesium-dependent, ATP-independent reaction. This mechanism, requiring a single polypeptide designated UV-induced dimer endonuclease for incision, is a substitute for the role of nucleotide excision repair of UV damage in N.crassa.  相似文献   

9.
The ad-8 gene of Neurospora crassa, in addition to being used for the study of purine biology, has been extensively studied as a model for gene structure, mutagenesis and intralocus recombination. Because of this there is an extensive collection of well-characterized N. crassa ad-8 mutants in the Fungal Genetics Stock Center collection. Among these are spontaneous mutants and mutants induced with X-ray, UV or chemical mutagens. The specific lesions in these mutants have been genetically mapped at high resolution. We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature of the mutation in each strain. We compare the historical fine-structure map to the DNA and amino acid sequence of each allele. The placement of the individual lesions in the fine-structure map was more accurate at the 5' end of the gene and no mutants were identified in the 3' untranslated region of this gene. We additionally analysed ad-8(+) alleles in 18 N. crassa strains subjected to whole-genome sequence analysis and describe the variability among Neurospora strains and among fungi and other organisms.  相似文献   

10.
11.
Biochemical basis of radiation-sensitivity in mutants of Neurospora crassa   总被引:2,自引:0,他引:2  
The available UV-sensitive mutants of Neurospora crassa were examined for their ability to excise and photoreactive cytosine-containing dimers invivo. All strains exhibited in vivo photoreactivation, including upr-1, which was originally thought to be deficient in photoreactivation. Two strains, uvs-2 and upr-1 were shown to be deficient in excision repair; uvs-3 was shown to contain a residual amount of excision capabilit. The remaining strains, uvs-1, uvs-5, and uvs-6, were normal in their ability to excise dimers. Based on these results, tentative analogies were drawn between the Neurospora mutants and the known classes of UV-sensitive mutants in E. coli. Accordingly, the N. crassa mutants were classified as uvs-1, -lon; uvs-2, -uvr; uvs-3, -uvr (rec?); uvs-5, -lon; uvs-6, -rec; and upr-1, -uvr. A comparison was made between the biochemical responses and the available published data on mutation induction in the Neurospora mutants. Althoughsome relationships were seen between repair defects and mutation induction, too little data were available for any definitive conclusions.  相似文献   

12.
Sakai W  Wada Y  Naoi Y  Ishii C  Inoue H 《DNA Repair》2003,2(3):337-346
In a previous paper, we reported that the Neurospora crassa upr-1 gene is a homolog of the yeast gene REV3, which encodes the catalytic subunit of DNA polymerase zeta (polzeta). Characterization of the upr-1 mutant indicated that the UPR1 protein plays a role in DNA repair and mutagenesis. To help understand the mechanisms of mutagenic DNA repair in the N. crassa more extensively, we identified N. crassa homologs of yeast REV1 and REV7 and obtained mutants ncrev1 or ncrev7, which had similar phenotypes to the upr-1 mutant. Mutant carrying ncrev7 was more sensitive to UV and 4NQO, and slightly sensitive to MMS than the wild-type. The sensitivity to UV and MMS of the ncrev1 mutant was moderately higher than that of the wild-type, but the sensitivity to 4NQO of the mutant was similar to that of the wild-type. In reversion assay using testers with base substitution or frameshift mutation at the ad-3A locus, each of ncrev1 and ncrev7 mutants showed lower induced-mutability than the wild-type. Expression of ncrev1 and ncrev7 was found to be UV-inducible like the case of upr-1. Genetic analyses showed that the ncrev7 was identical to mus-26, which belongs to the upr-1 epistasis group, and that the ncrev1 was a newly identified DNA repair gene and designated as mus-42. Interestingly, all three mutants have a normal CPD photolyase gene, however, they showed a partial photoreactivation defect (PPD) phenotype, not completely defective but inefficient in photoreactivation. These results suggest that N. crassa REV homolog genes function in DNA repair and UV mutagenesis through the bypass of (6-4) photoproducts.  相似文献   

13.
J. B. Boyd  R. B. Setlow 《Genetics》1976,84(3):507-526
Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by X-rays and UV radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following UV radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by X-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine-3H. The data have been employed to construct a model for repair of UV-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed.  相似文献   

14.
B K?berle  G Speit 《Mutation research》1991,249(1):161-167
The molecular basis of bleomycin (BLM)-induced mutations in the absence and presence of inhibitors of DNA repair was investigated in V79 cells with Southern hybridization techniques. 43% of the BLM-induced thioguanine-resistant mutants suffer from large alterations of hprt DNA sequences. To understand the role of DNA repair in the process of mutagenesis, the effect of inhibitors of DNA repair on the frequency and types of BLM-induced mutations was tested. The inhibitors used were arabinofuranosyl cytosine (araC), didesoxythymidine (ddThd) and 3-aminobenzamide (3AB), which inhibit different steps of excision repair. Only 3AB caused a comutagenic effect. The increased mutation frequency was mainly due to additionally induced gene deletions. In the presence of 3AB, 70% of the HPRT-deficient mutants revealed partial or total deletions of the hprt coding sequences. Thus, it could be shown that BLM induces a broad range of types of mutation and that inhibited repair of BLM-induced DNA damage leads to specific types of mutations.  相似文献   

15.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

16.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

17.
HP1 is essential for DNA methylation in neurospora   总被引:6,自引:0,他引:6  
Methylation of cytosines silences transposable elements and selected cellular genes in mammals, plants, and some fungi. Recent findings have revealed mechanistic connections between DNA methylation and features of specialized condensed chromatin, "heterochromatin." In Neurospora crassa, DNA methylation depends on trimethylation of Lys9 in histone H3 by DIM-5. Heterochromatin protein HP1 binds methylated Lys9 in vitro. We therefore investigated the possibility that a Neurospora HP1 homolog reads the methyl-Lys9 mark to signal DNA methylation. We identified an HP1 homolog and showed that it is essential for DNA methylation, is localized to heterochromatic foci, and that this localization is dependent on the catalytic activity of DIM-5. We conclude that HP1 serves as an adaptor between methylated H3 Lys9 and the DNA methylation machinery. Unlike mutants that lack DNA methyltransferase, mutants with defects in the HP1 gene hpo exhibit severe growth defects, suggesting that HP1 is required for processes besides DNA methylation.  相似文献   

18.
D. Dillon  D. Stadler 《Genetics》1994,138(1):61-74
Sequence analysis of 34 mtr mutations has yielded the first molecular spectrum of spontaneous mutants in Neurospora crassa. The great majority of the mutations are base substitutions (48%) or deletions (35%). In addition, sequence analysis of the entire mtr region, including the 1472-base pair open reading frame and 1205 base pairs of flanking DNA, was performed in both the Oak Ridge and Mauriceville strains of Neurospora, which are known to be divergent at the DNA level. Sixteen sequence differences between these two strains have been found in the mtr region, with 13 of these in DNA flanking the open reading frame. The differences consisted of base substitutions and small frameshifts at monotonic runs. This set of sequence differences has allowed a comparison of mutations in unselected DNA to those mutations that produce a phenotypic signal. We have isolated a mutator strain (mut-1) of Neurospora in which the spontaneous mutation rate at various loci is as much as 80-fold higher than in the non-mutator (wild type). Twenty-one mtr mutations in the mutator background have been sequenced and compared to the non-mutator spectrum, revealing a striking increase in -1 frameshift mutations. These frameshifts occur exclusively within or adjacent to monotonic runs and can be explained by small slippage events during DNA replication. This argues for a role of the mut-1 gene in this process.  相似文献   

19.
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the “access–repair–restore” (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号