首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kurtoxin, a 63-amino acid peptide stabilized by four disulfide bonds, is the first reported peptide inhibitor of T-type voltage-gated calcium channels. Although T-type calcium channels have been implicated in a number of disease states, including epilepsy, chronic pain, hypertension and cancer, the lack of selective inhibitors has slowed progress in understanding their precise roles. Kurtoxin is a potentially valuable tool with which to study T-type calcium channels. However, because of the limited availability of the native protein, little is known about the structure and molecular mechanism of kurtoxin. Here we report the expression of kurtoxin in Escherichia coli and the structural and functional characterization of the recombinant protein. The disulfide bond pairings and secondary structure of recombinant kurtoxin were characterized through enzymatic cleavage, mass analysis and CD spectroscopy. Recombinant kurtoxin almost completely inhibited the T-type calcium channel in a manner identical to the native toxin. The availability of recombinant kurtoxin that is identical to the native toxin should help in the study of T-type calcium channels and enable development of new strategies for producing even more-selective T-type calcium channel inhibitors and for investigating the molecular basis of the toxin-channel interactions.  相似文献   

2.
A small molecule library of 1,3-dioxoisoindoline-5-carboxamides 4 was designed based on the pharmacophore model, synthesized and biologically evaluated as potential T-type calcium channel blockers. The most active compounds 4d and 4n show T-type calcium channel blocking activity with IC50 values of 0.93 and 0.96 microM, respectively.  相似文献   

3.
T-type calcium channel is one of therapeutic targets for the treatment of cardiovascular diseases and neuropathic pains. Since the withdrawal of mibefradil, a T-type calcium channel blocker, there have been a lot of efforts to develop T-type calcium channel blockers. A small molecule library of dioxoquinazoline carboxamide derivatives containing 155 compounds was designed, synthesized, and biologically evaluated for T-type calcium channel blocking activity. Among those compounds synthesized, the compound 1n shows the most potent T-type calcium current blocking activity with an IC(50) value of 1.52 microM, which is comparable to that of mibefradil.  相似文献   

4.
Voltage-dependent calcium currents play a fundamental role during oocyte maturation, mostly L-type calcium currents, whereas T-type calcium currents are involved in sperm physiology and cell growth. In this paper, using an electrophysiological and pharmacological approach, we demonstrated, for the first time in oocytes, that T-type calcium currents are present with functional consequences on the plasma membrane of growing immature oocytes of the ascidian Styela plicata. We classified three subtypes of immature oocytes at the germinal vesicle stage on the basis of their size, morphology and accessory cellular structures. These stages were clearly associated with an increased activity of T-type calcium currents and hyperpolarization of the plasma membrane. We also observed that T-type calcium currents oscillate in the post-fertilization embryonic stages, with minimal amplitude of the currents in the zygote and maximal at 8-cell stage. In addition, chemical inhibition of T-type calcium currents, obtained by applying specific antagonists, induced a significant reduction in the rate of cleavage and absence of larval formation. We suggest that calcium entry via T-type calcium channels may act as a potential pacemaker in regulating cytosolic calcium involved in fertilization and early developmental events.  相似文献   

5.
Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.  相似文献   

6.
Low-voltage-activated (T-type) calcium channels play a role in diverse physiological responses including neuronal burst firing, hormone secretion, and cell growth. To better understand the biological role and therapeutic potential of the target, a number of structurally diverse antagonists have been identified. Multiple drug interaction sites have been identified for L-type calcium channels, suggesting a similar possibility exists for the structurally related T-type channels. Here, we radiolabel a novel amide T-type calcium channel antagonist (TTA-A1) and show that several known antagonists, including mibefradil, flunarizine, and pimozide, displace binding in a concentration-dependent manner. Further, we identify a novel quinazolinone T-type antagonist (TTA-Q4) that enhanced amide radioligand binding, increased affinity in a saturable manner and slowed dissociation. Functional evaluation showed these compounds to be state-dependent antagonists which show a positive allosteric interaction. Consistent with slowing dissociation, the duration of efficacy was prolonged when compounds were co-administered to WAG/Rij rats, a genetic model of absence epilepsy. The development of a T-type calcium channel radioligand has been used to demonstrate structurally distinct TTAs interact at allosteric sites and to confirm the potential for synergistic inhibition of T-type calcium channels with structurally diverse antagonists.  相似文献   

7.
Low-voltage-activated T-type calcium channels are expressed in various tissues, especially in the brain, where they promote neuronal firing and are involved in slow wave sleep and absence epilepsy. While the transduction pathways by which hormones and neurotransmitters modulate high-voltage-activated calcium channels are beginning to be unraveled, those implicated in T-type calcium channel regulation remain obscure. Several neurotransmitters and hormones regulate native T-type calcium channels, although some contradictory data have been reported depending on the cell type studied. This review focuses on the short-term (minutes range) modulation of T-type calcium channels by neurotransmitters and hormones and on the roles of G proteins and protein kinases in these modulatory effects. Results obtained in different native tissues are discussed and compared with the more recent studies of the three cloned T-type calcium channels CaV3.1, CaV3.2 and CaV3.3 in expression systems.  相似文献   

8.
T-type calcium channels are involved in the generation of rhythmical firing patterns in the mammalian central nervous system and in various pathological alterations of neuronal excitability such as in epilepsy or neuropathic pain. In the search for new T-type calcium channel blockers that would help to treat these disorders, we have followed a bi-dimensional pharmacophore-based virtual screening approach to identify new inhibitors. Nineteen molecules extracted from AurSCOPE Ion Channels knowledgebase were used as query molecules to screen an external database. This in silico approach was then validated using electrophysiology. Interestingly, 16 compounds out of 38 distinct molecules tested showed more than 50% blockade of the CaV3.2 mediated T-type current. Two series of compounds show chemical originality compared with known T-type calcium channel blockers.  相似文献   

9.
We have synthesized and biologically evaluated 1,4-diazepane derivatives as T-type calcium channel blockers. In this study, we discovered compound 4s, a potential T-type calcium channel blocker with good selectivity over hERG and N-type calcium channels. In addition, it exhibited favorable pharmacokinetic characteristics for further investigation of T-type calcium channel related diseases.  相似文献   

10.
T-type calcium channels are involved in the generation of rhythmical firing patterns in the mammalian central nervous system and in various pathological alterations of neuronal excitability such as in epilepsy or neuropathic pain. In the search for new T-type calcium channel blockers that would help to treat these disorders, we have followed a bi-dimensional pharmacophore-based virtual screening approach to identify new inhibitors. Nineteen molecules extracted from AurSCOPE Ion Channels knowledgebase were used as query molecules to screen an external database. This in silico approach was then validated using electrophysiology. Interestingly, 16 compounds out of 38 distinct molecules tested showed more than 50% blockade of the Ca(V)3.2 mediated T-type current. Two series of compounds show chemical originality compared with known T-type calcium channel blockers.  相似文献   

11.
12.
Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50 Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50 Hz, 0.2 mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50 Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50 Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.  相似文献   

13.
T型钙通道是激活电位低、失活速度快、单通道电导小的电压依赖性钙通道,具有高组织特异性、突出的生理功能及药理学选择性等特点。近年来的研究表明,T型钙通道通过独特的激活失活效应参与细胞内外钙流的振荡,影响肿瘤细胞的增殖过程。值得关注的是正常人乳腺上皮细胞中没有T型钙通道,而在不同分化阶段的乳腺癌细胞中该通道却有表达。实验证实,T型钙通道的表达影响乳腺癌细胞的增殖,通道拮抗剂能够显著地抑制乳腺癌细胞增殖。这一发现为乳腺癌的诊断及靶向治疗药物的研发提供了新的思路。本文概要介绍了近年来T型钙通道与乳腺癌关系的研究进展。  相似文献   

14.
Mutations in P/Q-type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T-type calcium channels in thalamus are observed in P/Q-type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T-type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q-type calcium channel mutation. We investigated changes in T-type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT-PCR analysis showed no change in T-type calcium channel alpha 1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in alpha 1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in alpha 1G expression in the leaner cerebellum, where the granule cell layer showed decreased alpha 1G expression while Purkinje cells showed increased alpha 1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT-PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased alpha 1G expression and the leaner Purkinje cell layer showed increased alpha 1G expression. These results suggest that differential expression of T-type calcium channels in the leaner cerebellum may be involved in the observed movement disorders.  相似文献   

15.
We have synthesized and evaluated α,α′-disubstituted phenylacetate derivatives that were designed as T-type calcium channel blockers. Among them, compound 10e (IC50 = 8.17 ± 0.48 nM) showed the most potent T-type calcium current blocking activity and higher potency than Mibefradil (IC50 = 1.34 ± 0.49 μM). The PK profile and subtype selectivity over L-type calcium channel were satisfied for further animal assay using disease model.  相似文献   

16.
T-type calcium channels and tumor proliferation   总被引:10,自引:0,他引:10  
Panner A  Wurster RD 《Cell calcium》2006,40(2):253-259
The role of T-type Ca2+ channels in proliferation of tumor cells is reviewed. Intracellular Ca2+ is important in controlling proliferation as evidenced by pulses, or oscillations, of intracellular Ca2+ which occur in a cell cycle-dependent manner in many tumor cells. Voltage-gated calcium channels, such as the T-type Ca2+ channel, are well suited to participate in such oscillations due to their unique activation/inactivation properties. Expression of the T-type Ca2+ channels has been reported in numerous types of tumors, and has been shown to be cell cycle-dependent. Overexpression of the alpha1 subunit of T-type Ca2+ channels in human astrocytoma, neuroblastoma and renal tumor cell lines enhanced proliferation of these cells. In contrast, targeting of the alpha1 subunit of the T-type calcium channel via siRNA decreased proliferation of these cells. A Ca2+ oscillatory model is proposed involving potassium channels, Ca2+ stores and Ca2+ exchangers/transporters. A review of T-type channel blockers is presented, with a focus on mibefradil-induced inhibition of proliferation. The development of newer blockers with higher selectivity and less potential side effects are discussed. The conclusion reached is that calcium channel blockers serve as a potential therapeutic approach for tumors whose proliferation depends on T-type calcium channel expression.  相似文献   

17.
18.
T-type (Cav3) channels are categorized as calcium channels, but invertebrate ones can be highly sodium-selective channels. We illustrate that the snail LCav3 T-type channel becomes highly sodium-permeable through exon splicing of an extracellular turret and descending helix in domain II of the four-domain Cav3 channel. Highly sodium-permeable T-type channels are generated without altering the invariant ring of charged residues in the selectivity filter that governs calcium selectivity in calcium channels. The highly sodium-permeant T-type channel expresses in the brain and is the only splice isoform expressed in the snail heart. This unique splicing of turret residues offers T-type channels a capacity to serve as a pacemaking sodium current in the primitive heart and brain in lieu of Nav1-type sodium channels and to substitute for voltage-gated sodium channels lacking in many invertebrates. T-type channels would also contribute substantially to sodium leak conductances at rest in invertebrates because of their large window currents.  相似文献   

19.
Virtual screening of the commercial databases was done by using a three dimensional pharmacophore previously developed for T-type calcium channel blockers using CATALYSTtrade mark program. Biological evaluation of 25 selected virtual hits resulted in the discovery of a highly potent compound VH04 with IC(50) value of 0.10 microM, eight times as potent as the known selective T-type calcium channel blocker, mibefradil. Search for similar compounds yielded several hits with micro-molar IC(50) values and high T-type calcium channel selectivity. Based on the structure of the virtual hits, small molecule libraries with novel scaffolds were designed, synthesis and biological evaluation of which are currently in progress. This result shows a successful example of ligand based drug discovery of potent T-type calcium channel blockers.  相似文献   

20.
A previous study showed that antitumor-analgesic peptide (AGAP), a novel recombinant polypeptide, which had been expressed in Escherichia coli, exhibits analgesic and antitumor effects in mice. In the present study, we investigated the underlying analgesic mechanism of AGAP. The effect of AGAP on voltage-gated calcium channels (VGCCs) was assessed in acutely isolated rat dorsal root ganglia (DRG) neurons using the whole-cell patch clamp technique. The results showed that AGAP potently inhibited VGCCs, especially high-voltage activated (HVA) calcium channels. AGAP inhibited HVA and T-type calcium currents in a dose-dependent manner, but had no significant effect on their dynamic functions in rat small-diameter DRG neurons. AGAP inhibited N- and L-type calcium currents at 78.2% and 57.3%, respectively. Thus, the present study demonstrates that AGAP affects calcium currents through the inhibition of N-, L- and T-type channels in DRG neurons, explaining the potential mechanisms of antinociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号