首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niethammer M  Smith DS  Ayala R  Peng J  Ko J  Lee MS  Morabito M  Tsai LH 《Neuron》2000,28(3):697-711
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.  相似文献   

2.
By making the hypothesis that the pattern of conserved sequence residues in the vicinity of the hydrolytic ATP-binding site of dynein would resemble that in myosins from a broad variety of sources, we designed degenerate oligonucleotide primers capable of amplifying this region of multiple dynein isoforms from sea urchin embryo poly(A)+ RNA. Quantification of the expression of two of these dynein isoforms has shown that the level of mRNA encoding for the beta-heavy chain, like that of tubulin, increases 2-3-fold after deciliation of the embryos, whereas the expression of the second dynein isoform, like that of actin, is essentially unaffected. This second isoform is believed to be the cytoplasmic dynein of sea urchin embryos.  相似文献   

3.
Cytoplasmic dynein has been implicated in numerous aspects of intracellular movement. We recently found dynein inhibitors to interfere with the reorientation of the microtubule cytoskeleton during healing of wounded NIH3T3 cell monolayers. We now find that dynein and its regulators dynactin and LIS1 localize to the leading cell cortex during this process. In the presence of serum, bright diffuse staining was observed in regions of active ruffling. This pattern was abolished by cytochalasin D, and was not observed in cells treated with lysophosphatidic acid, conditions which allow microtubule reorientation but not forward cell movement. Under the same conditions, using total internal reflection fluorescence microscopy, clear punctate dynein/dynactin containing structures were observed along the sides and at the tips of microtubules at the leading edge. Overexpression of dominant negative dynactin and LIS1 cDNAs or injection of antidynein antibody interfered with the rate of cell migration. Together, these results implicate a leading edge cortical pool of dynein in both early and persistent steps in directed cell movement.  相似文献   

4.
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data.  相似文献   

5.
Mutations in the LIS1 gene cause gross histological disorganization of the developing human brain, resulting in a brain surface that is almost smooth. Here we show that LIS1 protein co-immunoprecipitates with cytoplasmic dynein and dynactin, and localizes to the cell cortex and to mitotic kinetochores, which are known sites for binding of cytoplasmic dynein. Overexpression of LIS1 in cultured mammalian cells interferes with mitotic progression and leads to spindle misorientation. Injection of anti-LIS1 antibody interferes with attachment of chromosomes to the metaphase plate, and leads to chromosome loss. We conclude that LIS1 participates in a subset of dynein functions, and may regulate the division of neuronal progenitor cells in the developing brain.  相似文献   

6.
Zhuang L  Zhang J  Xiang X 《Genetics》2007,175(3):1185-1196
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.  相似文献   

7.
Polyclonal antibodies have been raised against four 16 residue peptides with sequences taken from the C-terminal quarter of the human cytoplasmic dynein heavy chain. The sites are downstream from a known microtubule-binding domain associated with the "stalk" that protrudes from the motor domain. The antisera were assayed using bacterially expressed proteins with amino acid sequences taken from the human cytoplasmic dynein heavy chain. Every antiserum reacted specifically with the appropriate expressed protein and with pig brain cytoplasmic dynein, whether the protein molecules were denatured on Western blots or were in a folded state. But, whereas three of the four antisera recognized freshly purified cytoplasmic dynein, the fourth reacted only with dynein that had been allowed to denature a little. After affinity purification against the expressed domains, whole IgG molecules and Fab fragments were assayed for their effect on dynein activity in in vitro microtubule-sliding assays. Of the three anti-peptides that reacted with fresh dynein, one inhibited motility but the others did not. The way these peptides are exposed on the surface is compatible with a model whereby the dynein motor domain is constructed from a ring of AAA protein modules, with the C-terminal module positioned on the surface that interacts with microtubules. We have tentatively identified an additional AAA module in the dynein heavy chain sequence, which would be consistent with a heptameric ring.  相似文献   

8.
9.
LIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and restored dynein motility following suppression by LIS1. However, the molecular mechanisms and detailed interactions of dynein, LIS1, and NDEL1 remain unknown. In this study, we dissected the regulatory effects of LIS1 and NDEL1 on dynein motility using full-length or truncated recombinant fragments of LIS1 or NDEL1. The C-terminal fragment of NDEL1 dissociated dynein from MTs, whereas its N-terminal fragment restored dynein motility following suppression by LIS1, demonstrating that the two functions of NDEL1 localize to different parts of the NDEL1 molecule, and that restoration from LIS1 suppression is caused by the binding of NDEL1 to LIS1, rather than to dynein. The truncated monomeric form of LIS1 had little effect on dynein motility, but an artificial dimer of truncated LIS1 suppressed dynein motility, which was restored by the N-terminal fragment of NDEL1. This suggests that LIS1 dimerization is essential for its regulatory function. These results shed light on the molecular interactions between dynein, LIS1, and NDEL1, and the mechanisms of cytoplasmic dynein regulation.  相似文献   

10.
Human EB1 is a highly conserved protein that binds to the carboxyl terminus of the human adenomatous polyposis coli (APC) tumor suppressor protein [1], a domain of APC that is commonly deleted in colorectal neoplasia [2]. EB1 belongs to a family of microtubule-associated proteins that includes Schizosaccharomyces pombe Mal3 [3] and Saccharomyces cerevisiae Bim1p [4]. Bim1p appears to regulate the timing of cytokinesis as demonstrated by a genetic interaction with Act5, a component of the yeast dynactin complex [5]. Whereas the predominant function of the dynactin complex in yeast appears to be in positioning the mitotic spindle [6], in animal cells, dynactin has been shown to function in diverse processes, including organelle transport, formation of the mitotic spindle, and perhaps cytokinesis [7] [8] [9] [10]. Here, we demonstrate that human EB1 can be coprecipitated with p150(Glued), a member of the dynactin protein complex. EB1 was also found associated with the intermediate chain of cytoplasmic dynein (CDIC) and with dynamitin (p50), another component of the dynactin complex, but not with dynein heavy chain, in a complex that sedimented at approximately 5S in a sucrose density gradient. The association of EB1 with members of the dynactin complex was independent of APC and was preserved in the absence of an intact microtubule cytoskeleton. The molecular interaction of EB1 with members of the dynactin complex and with CDIC may be important for microtubule-based processes.  相似文献   

11.
Cytoplasmic dynein is a microtubule (MT) motor protein comprising two classes: dynein-1 and dynein-2. We purified recombinant human dynein-1 and dynein-2 from HEK-293 cells by expressing the streptavidin-binding peptide-tagged human cytoplasmic dynein-1 and dynein-2 heavy chains (HCs), respectively. Electron microscopy of the purified molecules revealed a two-headed structure composed of characteristic dynein motor domains. In an in vitro MT gliding assay, both dynein-1 and dynein-2 showed minus-end-directed motor activities. This is the first demonstration of dynein-2 motor activity, which supports the retrograde intraflagellar transport role of dynein-2. Our expression system of dynein HCs provides a useful means to investigate dynein functions.  相似文献   

12.
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.  相似文献   

13.
Cytoplasmic dynein, a minus-end-directed microtubule motor, has been implicated in many cellular and developmental processes. Identification of specific cellular processes that rely directly on dynein would be facilitated by a means to induce specific and rapid inhibition of its function. We have identified conditional variants of a Caenorhabditis elegans dynein heavy chain (DHC-1) that lose function within a minute of a modest temperature upshift. Mutant embryos generated at elevated temperature show defects in centrosome separation, pronuclear migration, rotation of the centrosome/nucleus complex, bipolar spindle assembly, anaphase chromosome segregation, and cytokinesis. Our analyses of mutant embryos generated at permissive temperature and then upshifted quickly just before events of interest indicate that DHC-1 is required specifically for rotation of the centrosome/nucleus complex, for chromosome congression to a well ordered metaphase plate, and for timely initiation of anaphase. Our results do not support the view that DHC-1 is required for anaphase B separation of spindle poles and chromosomes. A P-loop mutation identified in two independent dominant temperature-sensitive alleles of dhc-1, when engineered into the DHC1 gene of Saccharomyces cerevisiae, conferred a dominant temperature-sensitive dynein loss-of-function phenotype. This suggests that temperature-sensitive mutations can be created for time-resolved function analyses of dyneins and perhaps other P-loop proteins in a variety of model systems.  相似文献   

14.
Shu T  Ayala R  Nguyen MD  Xie Z  Gleeson JG  Tsai LH 《Neuron》2004,44(2):263-277
Correct neuronal migration and positioning during cortical development are essential for proper brain function. Mutations of the LIS1 gene result in human lissencephaly (smooth brain), which features misplaced cortical neurons and disarrayed cerebral lamination. However, the mechanism by which LIS1 regulates neuronal migration remains unknown. Using RNA interference (RNAi), we found that the binding partner of LIS1, NudE-like protein (Ndel1, formerly known as NUDEL), positively regulates dynein activity by facilitating the interaction between LIS1 and dynein. Loss of function of Ndel1, LIS1, or dynein in developing neocortex impairs neuronal positioning and causes the uncoupling of the centrosome and nucleus. Overexpression of LIS1 partially rescues the positioning defect caused by Ndel1 RNAi but not dynein RNAi, whereas overexpression of Ndel1 does not rescue the phenotype induced by LIS1 RNAi. These results provide strong evidence that Ndel1 interacts with LIS1 to sustain the function of dynein, which in turn impacts microtubule organization, nuclear translocation, and neuronal positioning.  相似文献   

15.
To identify proteins that interact directly or indirectly with the NUDF protein, which is required for nuclear migration in Aspergillus nidulans, we initiated a screen for extragenic suppressors of the heat-sensitive nudF6 mutation. Suppressor mutations in at least five genes, designated snfAsnfE, caused improved growth and nuclear migration at high temperatures compared to the nudF6 parent. Two snfC mutations mapped near the nudA gene, which encodes the cytoplasmic dynein heavy chain, and could be repaired by transformation with wild-type nudA DNA, demonstrating that they are mutations in nudA. The snfC mutations are bypass suppressors of nudF and genetic evidence indicated that NUDA and NUDF act in the same nuclear migration pathway. Taken together, our data suggests that NUDF affects nuclear migration by acting on the dynein motor system. Received: 4 January 1997 / Accepted: 26 February 1997  相似文献   

16.
《Gene》1998,208(1):83-87
A gene encoding an unusually small dynein heavy chain homologue, hDYHH, was cloned from the genome of a free-living diplomonad, Hexamita inflata (Hi). The open reading frame (ORF) of hDYHH is 867 bp and encodes a polypeptide of 289 amino acids (aa), hDYHH. hDYHH is homologous to the region around the third P-loop ATP-binding site of several dynein heavy chain polypeptides that are around 4000 aa. Northern blot analysis showed that hDYHH is expressed in vivo and that the mRNA length (approximately 1.8 kb) is consistent with the gene length (1.67 kb). Southern blot analysis indicated that there are hDYHH homologues within the Hi genome, possibly including a longer dynein heavy chain gene. An hDYHH homologue was also identified in Hexamita pusilla (Hp). hDYHH is the first full-length protein-encoding gene cloned from Hexamita.  相似文献   

17.
Cytoplasmic dynein is a molecular motor complex consisting of four major classes of polypeptide: the catalytic heavy chains (HC), intermediate chains (IC), light intermediate chains (LIC), and light chains (LC). Previous studies have reported that the ICs bind near the N terminus of the HCs, which is thought to correspond to the base of the dynein complex. In this study, we co-overexpressed cytoplasmic dynein subunits in COS-7 cells to map HC binding sites for the ICs and LICs, as well as HC dimerization. We have found that the LICs bind directly to the N terminus of the HC, adjacent to and overlapping with the IC binding site, consistent with a role for the LICs in cargo binding. Mutation of the LIC P-loop had no detectable effect on HC binding. We detected no direct interaction between the ICs and LICs. Using triple overexpression of HC, IC and LIC, we found that both IC and LIC are present in the same complexes, a result verified by anti-IC immunoprecipitation of endogenous complexes and immunoblotting. Our results indicate that the LICs and ICs must be located on independent surfaces of cytoplasmic dynein to allow each to interact with other proteins without steric interference.  相似文献   

18.
19.
To identify proteins that interact directly or indirectly with the NUDF protein, which is required for nuclear migration in Aspergillus nidulans, we initiated a screen for extragenic suppressors of the heat-sensitive nudF6 mutation. Suppressor mutations in at least five genes, designated snfAsnfE, caused improved growth and nuclear migration at high temperatures compared to the nudF6 parent. Two snfC mutations mapped near the nudA gene, which encodes the cytoplasmic dynein heavy chain, and could be repaired by transformation with wild-type nudA DNA, demonstrating that they are mutations in nudA. The snfC mutations are bypass suppressors of nudF and genetic evidence indicated that NUDA and NUDF act in the same nuclear migration pathway. Taken together, our data suggests that NUDF affects nuclear migration by acting on the dynein motor system.  相似文献   

20.
The minus-ended microtubule motor cytoplasmic dynein contains a number of low molecular weight light chains including the 14-kDa Tctex-1. The assembly of Tctex-1 in the dynein complex and its function are largely unknown. Using partially deuterated, (15)N,(13)C-labeled protein samples and transverse relaxation-optimized NMR spectroscopic techniques, the secondary structure and overall topology of Tctex-1 were determined based on the backbone nuclear Overhauser effect pattern and the chemical shift values of the protein. The data showed that Tctex-1 adopts a structure remarkably similar to that of the 8-kDa light chain of the motor complex (DLC8), although the two light chains share no amino acid sequence homology. We further demonstrated that Tctex-1 binds directly to the intermediate chain (DIC) of dynein. The Tctex-1 binding site on DIC was mapped to a 19-residue fragment immediately following the second alternative splicing site of DIC. Titration of Tctex-1 with a peptide derived from DIC, which contains a consensus sequence R/KR/KXXR/K found in various Tctex-1 target proteins, indicated that Tctex-1 binds to its targets in a manner similar to that of DLC8. The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号