首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CD4(+) T cells are thought to be critical in the maintenance of virus-specific CD8(+) cytotoxic T-cell (CTL) responses. In human immunodeficiency virus type 1 (HIV-1) infection, a selective decline in HIV-1-specific CTL as the CD4(+) T-cell count decreases has been reported. Using HLA-peptide tetrameric complexes, we show the presence at high frequency of HIV-1- and cytomegalovirus-specific CD8(+) T cells when the peripheral CD4(+) T-cell count was low or zero in three HIV-1-infected patients. No direct virus-specific CD8(+)-mediated effector activity was seen in these subjects, suggesting antigen unresponsiveness, although tetramer-sorted cells could be expanded in vitro in the presence of interleukin-2 into responsive effector cells. Thus, virus-specific CD8(+) T cells can be maintained in the peripheral circulation at high frequency in the absence of circulating peripheral CD4(+) T cells, but these cells may lack direct effector activity. Strategies designed to overcome this antigen unresponsiveness may be of value in therapies for the treatment of AIDS.  相似文献   

3.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

4.
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+) T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+) T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+) T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.  相似文献   

5.
We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-gamma) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-gamma-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can be engineered to evoke stronger anti-HIV-1 CD8+ T-cell reactivity as a strategy to augment antiretroviral therapy.  相似文献   

6.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

7.
Therapeutic dendritic-cell vaccine for chronic HIV-1 infection   总被引:17,自引:0,他引:17  
We present the results of a preliminary investigation of the efficacy of a therapeutic dendritic cell (DC)-based vaccine for HIV-1. We immunized 18 chronically HIV-1-infected and currently untreated individuals showing stable viral loads for at least 6 months with autologous monocyte-derived DCs loaded with autologous aldrithiol-2-inactivated HIV-1. Plasma viral load levels were decreased by 80% (median) over the first 112 d following immunization. Prolonged suppression of viral load of more than 90% was seen in 8 individuals for at least 1 year. The suppression of viral load was positively correlated with HIV-1-specific interleukin-2 or interferon-gamma-expressing CD4(+) T cells and with HIV-1 gag-specific perforin-expressing CD8(+) effector cells, suggesting that a robust virus-specific CD4(+) T-helper type 1 (T(H)1) response is required for inducing and maintaining virus-specific CD8(+) effectors to contain HIV-1 in vivo. The results suggest that inactivated whole virus-pulsed DC vaccines could be a promising strategy for treating people with chronic HIV-1 infection.  相似文献   

8.
Homozygosity for the naturally occurring Delta32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted approximately 50% of CCR5 alleles in a pool of primary human CD4(+) T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4(+) T cells had lower viral loads and higher CD4(+) T-cell counts than mice engrafted with wild-type CD4(+) T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4(+) T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN-modified autologous CD4(+) T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.  相似文献   

9.
10.
In vivo, several mechanisms have been postulated to protect HIV-1-infected cells from NK surveillance. In vitro, previous research indicates HIV-1-infected autologous CD4(+) primary T cells are resistant to NK lysis. We hypothesized that NK lysis of HIV-1-infected target cells would be augmented by the presence of accessory cells and/or accessory cell factors. In this study, we show that stimulation of plasmacytoid dendritic cells (PDC) with the TLR9 agonist, CpG ODN 2216, triggered NK lysis of HIV-1-infected autologous CD4(+) primary T cells. PDC-stimulated NK lysis was dependent upon MHC class I (MHC-I) down-regulation on infected cells, and primary HIV-1 isolates that exhibited enhanced MHC-I down-regulation were more susceptible to NK-mediated lysis. PDC-stimulated NK lysis of HIV-1-infected autologous CD4(+) primary T cells was blocked by neutralizing Abs to type 1 IFN and was perforin/granzyme dependent. Overall, our data suggest that HIV-infected cells are not innately resistant to NK lysis, and that exogenous NK stimulation derived from PDC can trigger NK cytotoxicity against HIV-1-infected autologous CD4(+) primary T cells.  相似文献   

11.
Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4(+) T cells along with death and/or dysfunction of CD8(+) T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4(+) and CD8(+) T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4(+) T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8(+) T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4(+) T cells, neither viral isolate induced apoptosis in CD8(+) T cells. Moreover, in both infected and control tissues we found similar numbers of CD8(+) T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3-anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4(+) T cells, the death of CD8(+) T cells apparently requires additional factors.  相似文献   

12.
Immunization with antigen-pulsed dendritic cells (DCs) can be used to elicit optimal immune responses. We developed the SRDC cell line, with a morphology, phenotype and activity similar to mouse splenic CD4(-)CD8alpha(+)CD205(+)CD11b(-) dendritic cells, which induce a polarized Th1 immune response. We evaluated the ability of SRDCs pulsed with HIV-1 viral lysate, oligomeric soluble gp140 or capsid p24 to induce specific antibody and T-cell responses in CBA/J mice. Immunization with all loaded SRDCs elicited antibody responses against the antigens tested. However, only HIV-1 viral lysate and gp140-pulsed SRDCs elicited specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate the value of well characterized DC lines for optimizing the antigen-loading mixture, according to the DC population targeted. Our data suggest that splenic DCs pulsed with complex antigens, such as HIV-1 viral lysate or oligomeric soluble gp140, could be used as vaccines, eliciting strong primary Th1-polarized and humoral immune responses against HIV proteins in vivo.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.  相似文献   

14.
Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4(+) T-cell response. Therefore, understanding and characterizing HIV-specific CD4(+) T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4(+) T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4(+) T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4(+) T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4(+) T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4(+) T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.  相似文献   

15.
We have measured in 22 asymptomatic human immunodeficiency virus type 1-infected patients (10 rapid progressors and 12 slow progressors) the proviral load of CD4(+) T cells homogeneously superinfected by the same dose of a non-syncytium-inducing virus in the presence or in the absence of autologous CD8(+) T cells. We demonstrated that the antiviral activity of CD8(+) T cells was highly predictive of the rate of peripheral CD4(+) T-cell decline.  相似文献   

16.
CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8(+) T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8(+) responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8(+) T cells during AHI. Autologous and heterologous CD8(+) T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8(+) T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8(+) antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8(+)-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8(+) T cell-mediated inhibition of virus replication. CD8(+) T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.  相似文献   

17.
Human papillomavirus (HPV) type 16 (HPV 16) and HPV type 18 (HPV 18) are implicated in the induction and progression of the majority of cervical cancers. Since the E6 and E7 oncoproteins of these viruses are expressed in these lesions, such proteins might be potential tumor-specific targets for immunotherapy. In this report, we demonstrate that recombinant, full-length E7-pulsed autologous dendritic cells (DC) can elicit a specific CD8(+) cytotoxic T-lymphocyte (CTL) response against autologous tumor target cells in three patients with HPV 16- or HPV 18-positive cervical cancer. E7-specific CTL populations expressed strong cytolytic activity against autologous tumor cells, did not lyse autologous concanavalin A-treated lymphoblasts or autologous Epstein-Barr virus-transformed lymphoblastoid cell lines (LCL), and showed low levels of cytotoxicity against natural killer cell-sensitive K562 cells. Cytotoxicity against autologous tumor cells could be significantly blocked by anti-HLA class I (W6/32) and anti-CD11a/LFA-1 antibodies. Phenotypically, all CTL populations were CD3(+)/CD8(+), with variable levels of CD56 expression. CTL induced by E7-pulsed DC were also highly cytotoxic against an allogeneic HLA-A2(+) HPV 16-positive matched cell line (CaSki). In addition, we show that specific lymphoproliferative responses by autologous CD4(+) T cells can also be induced by E7-pulsed autologus DC. E7-specific CD4(+) T cells proliferated in response to E7-pulsed LCL but not unpulsed LCL, and this response could be blocked by anti-HLA class II antibody. Finally, with two-color flow cytometric analysis of intracellular cytokine expression at the single-cell level, a marked Th1-like bias (as determined by the frequency of gamma interferon- and interleukin 4-expressing cells) was observable for both CD8(+) and CD4(+) E7-specific lymphocyte populations. Taken together, these data demonstrate that full-length E7-pulsed DC can induce both E7-specific CD4(+) T-cell proliferative responses and strong CD8(+) CTL responses capable of lysing autologous naturally HPV-infected cancer cells in patients with cervical cancer. These results may have important implications for the treatment of cervical cancer patients with active or adoptive immunotherapy.  相似文献   

18.
Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j(+) NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j(-) NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j(+) NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j(+) NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC.  相似文献   

19.
Boritz E  Palmer BE  Wilson CC 《Journal of virology》2004,78(22):12638-12646
Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-gamma)-producing CD4+ T cells. Among the 20 viremic, treatment-naive subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-gamma-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.  相似文献   

20.
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) mediate immunologic selection pressure by both cytolytic and noncytolytic mechanisms. Non cytolytic mechanisms include the release of beta-chemokines blocking entry of R5 HIV-1 strains. In addition, CD8(+) cells inhibit X4 virus isolates via release of as yet poorly characterized soluble factors. To further characterize these factors, we performed detailed analysis of CTL as well as bulk CD8(+) T lymphocytes from six HIV-1-infected individuals and from six HIV-1-seronegative individuals. Kinetic studies revealed that secreted suppressive activities of HIV-1-specific CTL and bulk CD8(+) T lymphocytes from all HIV-1-infected persons are significantly higher than that of supernatants from seronegative controls. The suppressive activity could be blocked by monensin and brefeldin A, was heat labile, and appeared in a pattern different from that of secretion of chemokines (MDC, I-309, MIP-1alpha, MIP-1beta, and RANTES), cytokines (gamma interferon, tumor necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor), and interleukins (interleukin-13 and interleukin-16). This suppression activity was characterized by molecular size exclusion centrifugation and involves a suppressive activity of >50 kDa which could be bound to heparin and a nonbinding inhibitory activity of <50 kDa. Our data provide a functional link between CD8(+) cells and CTL in the noncytolytic inhibition of HIV-1 and suggest that suppression of X4 virus is mediated through proteins. The sizes of the proteins, their affinity for heparin, and the pattern of release indicate that these molecules are not chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号