首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ADAM-TS5 (aggrecanase 2), one of two cartilage aggrecanases is a member of the ADAM protein family. Like ADAM-TS4 (aggrecanase 1) the enzyme cleaves cartilage aggrecan at the Glu(373)-Ala(374) bond, a marker of aggrecanase activity. In this study we have characterized the substrate specificity of ADAM-TS5 and compared it with that of ADAM-TS4. The recombinant human ADAM-TS5, like ADAM-TS4 cleaves aggrecan at Glu(1480)-Gly(1481), Glu(1667)-Gly(1668), Glu(1771)-Ala(1772) and Glu(1871)-Leu(1872) bonds more readily than at the Glu(373)-Ala(374) bond. In addition, ADAM-TS5 exhibited an additional site of cleavage in the region spanning residues Gly(1481) and Glu(1667), representing a unique cleavage of ADAM-TS5. ADAM-TS5 cleaved aggrecan approximately 2-fold slower than ADAM-TS4. Neither ADAM-TS5 nor ADAM-TS4 was able to cleave the extracellular matrix proteins fibronectin, thrombospondin, type I collagen, type II collagen, gelatin or general protein substrates such as casein and transferrin. Finally, the zymogen of stromelysin (MMP-3) was not activated by either ADAM-TS4 or ADAM-TS5.  相似文献   

2.
Aggrecan, the major proteoglycan of cartilage that provides its mechanical properties of compressibility and elasticity, is one of the first matrix components to undergo measurable loss in arthritic diseases. Two major sites of proteolytic cleavage have been identified within the interglobular domain (IGD) of the aggrecan core protein, one between amino acids Asn(341)-Phe(342) which is cleaved by matrix metalloproteinases and the other between Glu(373)-Ala(374) that is attributed to aggrecanase. Although several potential aggrecanase-sensitive sites had been identified within the COOH terminus of aggrecan, demonstration that aggrecanase cleaved at these sites awaited isolation and purification of this protease. We have recently cloned human aggrecanase-1 (ADAMTS-4) (Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Arner, E. C. (1999) Science 284, 1664-1666) and herein demonstrate that in addition to cleavage at the Glu(373)-Ala(374) bond, this protease cleaves at four sites within the chondroitin-sulfate rich region of the aggrecan core protein, between G2 and G3 globular domains. Importantly, we show that this cleavage occurs more efficiently than cleavage within the IGD at the Glu(373)-Ala(374) bond. Cleavage occurred preferentially at the KEEE(1667-1668)GLGS bond to produce both a 140-kDa COOH-terminal fragment and a 375-kDa fragment that retains an intact G1. Cleavage also occurred at the GELE(1480-1481)GRGT bond to produce a 55-kDa COOH-terminal fragment and a G1-containing fragment of 320 kDa. Cleavage of this 320-kDa fragment within the IGD at the Glu(373)-Ala(374) bond then occurred to release the 250-kDa BC-3-reactive fragment from the G1 domain. The 140-kDa GLGS-reactive fragment resulting from the preferential cleavage was further processed at two additional cleavage sites, at TAQE(1771)-(1772)AGEG and at VSQE(1871-1872)LGQR resulting in the formation of a 98-kDa fragment with an intact G3 domain and two small fragments of approximately 20 kDa. These data elucidate the sites and efficiency of cleavage during aggrecan degradation by aggrecanase and suggest potential tools for monitoring aggrecan cleavage in arthritis.  相似文献   

3.
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn(341)-Phe(342) and Glu(373)-Ala(374). While several matrix metalloproteinases have been shown to cleave at Asn(341)-Phe(342), an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu(373)-Ala(374) and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammation-associated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu(373)-Ala(374) site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.  相似文献   

4.
Aggrecanase cleavage at the Glu(373)-Ala(374) site in the interglobular domain of the cartilage proteoglycan aggrecan is a key event in arthritic diseases. The observation that substrates representing only the aggrecanase cleavage site are not catabolized efficiently by aggrecanase prompted us to investigate the requirement of aggrecanase for additional structural elements of its substrate other than the actual cleavage site. Based on the recombinant substrate rAgg1mut we constructed deletion mutants with successively truncated N- or C-termini of the interglobular domain. Catabolism by aggrecanase activities induced in rat chondrosarcoma cells, porcine chondrocytes, and by human recombinant ADAMTS4 showed a gradually decreasing catabolism of progressively shortened, N-terminal deletion mutants of the substrate rAgg1mut. A reduction to 32 amino acids N-terminal to the aggrecanase site resulted in a decrease of at least 42% of aggrecanase cleavage products as compared with the wild-type substrate. When only 16 amino acids preceded the Glu(373)-Ala(374) site, aggrecanase cleavage was completely inhibited. In contrast, C-terminal deletions did not negatively affect aggrecanase cleavage up to the reduction to 13 amino acids C-terminal to the cleavage site. Unlike aggrecanase(s), membrane type 1-matrix metalloprotease (MT1-MMP), able to cleave rAgg1mut both at the aggrecanase and the MMP site, was insensitive to N-terminal deletions regarding aggrecanase cleavage, indicating that the importance of the N-terminus is characteristic for aggrecanase(s). Taken together, the results demonstrate that the amino-terminus of rAgg1mut, containing the MMP site, plays an important role for efficient cleavage by aggrecanase(s), possibly by serving as a further site of interaction between the enzyme and its substrate.  相似文献   

5.
Erosion of cartilage is a major feature of joint diseases, i.e., osteoarthritis and rheumatoid arthritis, which leads with time to a loss of joint function. Proteolytic cleavage of the aggrecan core protein is a key event in the progress of these joint diseases. Aggrecan degradation has been believed to be mediated by a putative proteinase, aggrecanase. We identified aggrecanase activity in conditioned medium from explant culture of bovine nasal cartilage stimulated by retinoic acid. The activity was partially purified more than 10,000-fold. The enzyme cleaves at the aggrecanase site (Glu(373)-Ala(374)) but not at the MMP site (Asn(341)-Phe(342)) in the interglobular domain of the aggrecan. It also cleaves at Glu(1971)-Leu(1972), which is located in the gap region in the chondroitin sulfate attachment region prior to the aggrecanase site. The enzyme is a typical Ca(2+)-dependent metalloproteinase with a unique salt-dependency and is inhibited by several hydroxamate-based inhibitors for matrix metalloproteinases. Heparin and chondroitin sulfate inhibited the enzyme in a dose-dependent manner, suggesting that the large carbohydorate in aggrecan is important for substrate recognition by aggrecanase.  相似文献   

6.
Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing   总被引:10,自引:0,他引:10  
ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs) is a multidomain metalloproteinase belonging to the reprolysin family. The enzyme cleaves aggrecan core protein at several sites. Here we report that the non-catalytic ancillary domains of the enzyme play a major role in regulating aggrecanase activity, with the C-terminal spacer domain masking the general proteolytic activity. Expressing a series of domain deletion mutants in mammalian cells and examining their aggrecan-degrading and general proteolytic activities, we found that full-length ADAMTS-4 of 70 kDa was the most effective aggrecanase, but it exhibited little activity against the Glu(373)-Ala(374) bond, the site originally characterized as a signature of aggrecanase activity. Little activity was detected against reduced and carboxymethylated transferrin (Cm-Tf), a general proteinase substrate. However, it readily cleaved the Glu(1480)-Gly(1481) bond in the chondroitin sulfate-rich region of aggrecan. Of the constructed mutants, the C-terminal spacer domain deletion mutant more effectively hydrolyzed both the Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds. It also revealed new activities against Cm-Tf, fibromodulin, and decorin. Further deletion of the cysteine-rich domain reduced the aggrecanase activity by 80% but did not alter the activity against Cm-Tf or fibromodulin. Further removal of the thrombospondin type I domain drastically reduced all tested proteolytic activities, and very limited enzymatic activity was detected with the catalytic domain. Full-length ADAMTS-4 binds to pericellular and extracellular matrix, but deletion of the spacer domain releases the enzyme. ADAMTS-4 lacking the spacer domain has promiscuous substrate specificity considerably different from that previously reported for aggrecan core protein. Finding of ADAMTS-4 in the interleukin-1alpha-treated porcine articular cartilage primarily as a 46-kDa form suggests that it exhibits a broader substrate spectrum in the tissue than originally considered.  相似文献   

7.
We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.  相似文献   

8.
ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are multidomain metalloproteinases belonging to the ADAMTS family. We have previously reported that human ADAMTS-5 has much higher aggrecanolytic activity than human ADAMTS-4. To investigate the different proteolytic activity of the two enzymes, we generated a series of chimeras by exchanging various non-catalytic domains of the two proteinases. We found that the catalytic domain of ADAMTS-5 has higher intrinsic catalytic ability than that of ADAMTS-4. The studies also demonstrated that the non-catalytic domains of ADAMTS-5 are more effective modifiers than those of ADAMTS-4, making both catalytic domains more active against aggrecan, an Escherichia coli-expressed interglobular domain of aggrecan and fibromodulin. Addition of the C-terminal thrombospondin type I motif of ADAMTS-5 to the C terminus of ADAMTS-4 increased the activity of ADAMTS-4 against aggrecan and fibromodulin severalfold. In contrast to previous reports (Kashiwagi, M., Enghild, J. J., Gendron, C., Hughes, C., Caterson, B., Itoh, Y., and Nagase, H. (2004) J. Biol. Chem. 279, 10109-10119 and Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) J. Biol. Chem. 279, 10042-10051), our detailed investigation of the role of the C-terminal spacer domain of ADAMTS-4 indicated that full-length ADAMTS-4 is approximately 20-times more active against aggrecan than its spacer domain deletion mutant, even at the Glu373-Ala374 site of the interglobular domain. This discrepancy is most likely due to selective inhibition of full-length ADAMTS-4 by heparin, particularly for cleavage at the Glu373-Ala374 bond. However, removal of the spacer domain from ADAMTS-4 greatly enhanced more general proteolytic activity against non-aggrecan substrates, e.g. E. coli-expressed interglobular domain, fibromodulin, and carboxymethylated transferrin.  相似文献   

9.
Aggrecanases are ADAMTS (a disintegrin and metalloproteinase with thrombospondin type I motifs) proteases capable of primary (patho)physiological cleavage at specific Glu-Xaa bonds within the core protein of the hyaluronan-binding proteoglycan aggrecan. Accumulating evidence suggests that regulation of the activity of one such aggrecanase, ADAMTS-4 (or Aggrecanase-1), involves post-translational C-terminal processing (truncation) which modulates both glycosaminoglycan (GAG)-binding affinity and enzymatic activity. In the present study, we compared the effects of C-terminal truncation on the GAG-binding properties and aggrecanase activity of ADAMTS-5 (Aggrecanase-2) relative to three other ADAMTS family members, ADAMTS-9, ADAMTS-16 and ADAMTS-18. Full-length recombinant human ADAMTS-5 (M(r) approximately 85 kDa; ADAMTS-5p85) underwent autolytic cleavage during expression by CHO/A2 cells, and co-purified with C-terminally truncated (tr) isoforms of M(r) approximately 60 kDa (ADAMTS-5p60 and M(r) approximately 45 kDa (ADAMTS-5p45). All three ADAMTS-5 isoforms bound to sulfated GAGs (heparin and chondroitin sulfate (CS)). An ADAMTS-5p45 structural mimetic, terminating at Phe628 and comprising the catalytic domain, disintegrin-like domain and thrombospondin type I repeat (TSR)-1 domain (designated trADAMTS-5F628), also bound to heparin, and exhibited potent aggrecanase activity toward cleavage sites both in the aggrecan CS-2-attachment region (at Glu1771-Ala1772) and in the interglobular domain (at Glu373-Ala374). Further truncation (deletion of the TSR-1 domain) of ADAMTS-5 significantly reduced aggrecanase activity, although appreciable GAG (heparin)-binding affinity was maintained. Other TSR-1 domain-bearing truncated ADAMTS constructs demonstrating either positive GAG-binding ability (trADAMTS-9F649) or negligible GAG-affinity (trADAMTS-16F647 and trADAMTS-18F650) displayed comparably low aggrecanase activities. Thus, the presence of TSR-1 on truncated ADAMTSs appears to be necessary, but not sufficient, for effective aggrecanase-mediated catalysis of target Glu-Xaa bonds. Similarly, GAG-binding ability, irrespective of the presence of a TSR-1 domain, does not necessarily empower truncated ADAMTSs with proficient aggrecanase activity.  相似文献   

10.
Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.  相似文献   

11.
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region.  相似文献   

12.
A method was developed for generating soluble, active "aggrecanase" in conditioned media from interleukin-1-stimulated bovine nasal cartilage cultures. Using bovine nasal cartilage conditioned media as a source of the aggrecanase enzyme, an enzymatic assay was established employing purified aggrecan monomers as a substrate and monitoring specific aggrecanase-mediated cleavage products by Western analysis using the monoclonal antibody, BC-3 (which recognizes the new N terminus, ARGS, on fragments produced by cleavage between amino acid residues Glu373 and Ala374). Using this assay we have characterized cartilage aggrecanase with respect to assay kinetics, pH and salt optima, heat sensitivity, and stability upon storage. Aggrecanase activity was inhibited by the metalloprotease inhibitor, EDTA, while a panel of inhibitors of serine, cysteine, and aspartic proteinases had no effect, suggesting that aggrecanase is a metalloproteinase. Sensitivity to known matrix metalloproteinase inhibitors as well as to the endogenous tissue inhibitor of metalloproteinases, TIMP-1, further support the notion that aggrecanase is a metalloproteinase potentially related to the ADAM family or MMP family of proteases previously implicated in the catabolism of the extracellular matrix.  相似文献   

13.
A recombinant human aggrecan G1-G2 fragment comprising amino acids Val(1)-Arg(656) has been expressed in Sf21 cells using a baculovirus expression system. The recombinant G1-G2 (rG1-G2) was purified to homogeneity by hyaluronan-Sepharose affinity chromatography followed by high performance liquid chromatography gel filtration, and gave a single band of M(r) 90,000-95,000 by silver stain or immunoblotting with monoclonal antibody 1-C-6. The expressed G1-G2 bound to both hyaluronan and link protein indicating that the immunoglobulin-fold motif and proteoglycan tandem repeat loops of the G1 domain were correctly folded. Further analysis of secondary structure by rotary shadowing electron microscopy confirmed a double globe appearance, but revealed that the rG1-G2 was more compact than its native counterpart. The size of rG1-G2 by SDS-polyacrylamide gel electorphoresis was unchanged following digestion with keratanase and keratanase II and reduced by only 2-5 kDa following digestion with either O-glycosidase or N-glycosidase F. Recombinant G1-G2 was digested with purified matrix metalloproteinases (MMP), isolated aggrecanase, purified atrolysin C, or proteinases present in conditioned medium from cartilage explant cultures, and the products analyzed on SDS gels by silver stain and immunoblotting. Neoepitope antibodies recognizing the N-terminal F(342)FGVG or C-terminal DIPEN(341) sequences were used to confirm MMP cleavage at the Asn(341) downward arrow Phe bond, while neoepitope antibodies recognizing the N-terminal A(374)RGSV or C-terminal ITEGE(373) sequences were used to confirm aggrecanase cleavage at the Glu(373) downward arrow Ala bond. Cleavage at the authentic MMP and aggrecanase sites revealed that these proteinases have the same specificity for rG1-G2 as for native aggrecan. Incubation of rG1-G2 with conditioned medium from porcine cartilage cultures revealed that active soluble aggrecanase but no active MMPs, was released following stimulation with interleukin-1alpha or retinoic acid. Atrolysin C, which cleaves native bovine aggrecan at both the aggrecanase and MMP sites, efficiently cleaved rG1-G2 at the aggrecanase site but failed to cleave at the MMP site. In contrast, native glycosylated G1-G2 with or without keratanase treatment was cleaved by atrolysin C at both the aggrecanase and MMP sites. The results suggest that the presence or absence per se of keratan sulfate on native G1-G2 does not affect the activity of atrolysin C toward the two sites.  相似文献   

14.
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.  相似文献   

15.
We have studied aggrecan catabolism mediated by matrix metalloproteinases (MMPs) in a porcine cartilage culture system. Using antibodies specific for DIPEN(341) and (342)FFGVG neoepitopes, we have detected MMP-derived fragments in conditioned medium and cultured cartilage, by radioimmunoassay, Western blotting, and immunolocalization. Radioimmunoassay revealed that the amount (pmol of epitope/mg of total glycosaminoglycan) of (342)FFGVG epitope released from cartilage remained constant over a 5-day culture period and was not increased by IL-1alpha or retinoate. However, the proportion (pmol of epitope/mg of released glycosaminoglycan) of (342)FFGVG epitope released was decreased upon stimulation, consistent with the involvement of a non-MMP proteinase, such as aggrecanase. The data suggest that in vitro MMPs may be involved in the base-line catabolism of aggrecan. Immunolocalization experiments showed that DIPEN(341) and ITEGE(373) epitopes were increased by treatment with IL-1alpha and retinoate. Confocal microscopy revealed that ITEGE(373) epitope was largely intracellular but with matrix staining in the superficial zone, whereas DIPEN(341) epitope was cell-associated and widely distributed in the matrix. Surprisingly, the majority of (342)FFGVG epitope, determined by radioimmunoassay and Western blotting, was retained in the tissue despite the absence of a G1 domain anchor. Interleukin-1alpha stimulation caused a marked increase in tissue DIPEN(341) and (342)FFGVG epitope, and the (342)FFGVG fragments retained in the tissue were larger than those released into the medium. Active porcine aggrecanase was unable to cleave (342)FFGVG fragments at the downward arrowGlu(373) downward arrowAla(374) bond but cleaved intact aggrecan at this site, suggesting that (342)FFGVG fragments are not substrates for aggrecanase. The apparent retention of large (342)FFGVG fragments within cartilage, and their resistance to N-terminal cleavage by aggrecanase suggests that (342)FF6V6 fragments may have a role in cartilage homeostasis.  相似文献   

16.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

17.
18.
In the mouse, proteolysis in the aggrecan interglobular domain is driven by ADAMTS-5, and mice deficient in ADAMTS-5 catalytic activity are protected against aggrecan loss and cartilage damage in experimental models of arthritis. Here we show that despite ablation of ADAMTS-5 activity, aggrecanolysis can still occur at two preferred sites in the chondroitin sulfate-rich region. Retinoic acid was more effective than interleukin-1alpha (IL) in promoting cleavage at these sites in ADAMTS-5-deficient cartilage. These results suggest that cleavage at preferred sites in the chondroitin sulfate-rich region is mediated by ADAMTS-4 or an aggrecanase other than ADAMTS-5. Following retinoic acid or IL-1alpha stimulation of cartilage explants, aggrecan fragments in medium and extracts contained SELE(1279) or FREEE(1467) C-terminal sequences. Some SELE(1279) and FREEE(1467) fragments were retained in the cartilage, with intact G1 domains. Other SELE(1279) fragments were released into the medium and co-migrated with the (374)ALGS neoepitope, indicating they were aggrecanase-derived fragments. In contrast none of the FREEE(1467) fragments released into the medium co-migrated with the (374)ALGS neoepitope, suggesting that, despite their size, these fragments were not products of aggrecanase cleavage in the interglobular domain. ADAMTS-5, but not ADAMTS-1, -4, or -9, was up-regulated 8-fold by retinoic acid and 17-fold by IL-1alpha treatment. The data show that whereas ADAMTS-5 is entirely responsible for cleavage in the interglobular domain, cleavage in the chondroitin sulfate-rich region is driven either by ADAMTS-4, which compensates for loss of ADAMTS-5 in this experimental system, or possibly by another aggrecanase. The data show that there are differential aggrecanase activities with preferences for separate regions of the core protein.  相似文献   

19.
Aggrecanases are key matrix-degrading enzymes that act by cleaving aggrecan at the Glu(373)-Ala(374) site. While these fragments have been detected in osteoarthritis (OA) and rheumatoid arthritis (RA) cartilage and synovial fluid, no information is available on the regulation or expression of the two key aggrecanases (aggrecanase-1 and aggrecanase-2) in synovial tissue (ST) or fibroblast-like synoviocytes (FLS). The aggrecanase-1 gene was constitutively expressed by both RA and OA FLS. Real-time PCR demonstrated that TGF-beta significantly increased aggrecanase-1 gene expression in FLS. Aggrecanase-1 induction peaked after 24 h of TGF-beta stimulation. The expression of aggrecanase-1 mRNA was significantly greater in RA ST than in OA or nonarthritis ST. Aggrecanase-2 mRNA and protein were constitutively produced by nonarthritis, OA, and RA FLS but were not increased by IL-1, TNF-alpha, or TGF-beta. Furthermore, OA, RA, and nonarthritis ST contained similar amounts of immunoreactive aggrecanase-2. The major form of the aggrecanase-2 enzyme was 70 kDa in nonarthritis ST, whereas a processed 53-kDa form was abundant in RA ST. Therefore, aggrecanase-1 and -2 are differentially regulated in FLS. Both are constitutively expressed, but aggrecanase-1 is induced by cytokines, especially TGF-beta. In contrast, aggrecanase-2 protein may be regulated by a post-translational mechanism in OA and RA ST. Synovial and FLS production of aggrecanase can contribute to cartilage degradation in RA and OA.  相似文献   

20.
Although it has been shown that aggrecanases are involved in aggrecan degradation, the role of MMP (matrix metalloproteinase) aggrecanolysis is less well studied. To investigate MMP proteolysis of human aggrecan, in the present study we used neoepitope antibodies against MMP cleavage sites and Western blot analysis to identify MMP-generated fragments in normal and OA (osteoarthritis/osteoarthritic) cartilage, and in normal, knee injury and OA and SF (synovial fluid) samples. MMP-3 in vitro digestion showed that aggrecan contains six MMP cleavage sites, in the IGD (interglobular domain), the KS (keratan sulfate) region, the border between the KS region and CS (chondroitin sulfate) region 1, the CS1 region, and the border between the CS2 and the G3 domain, and kinetic studies showed a specific order of digestion where the cleavage between CS2 and the G3 domain was the most preferred. In vivo studies showed that OA cartilage contained (per dry weight) 3.4-fold more MMP-generated FFGV fragments compared with normal cartilage, and although aggrecanase-generated SF-ARGS concentrations were increased 14-fold in OA and knee-injured patients compared with levels in knee-healthy reference subjects, the SF-FFGV concentrations did not notably change. The results of the present study suggest that MMPs are mainly involved in normal aggrecan turnover and might have a less-active role in aggrecan degradation during knee injury and OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号