首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to investigate the effects of arbuscular mycorrhizal (AM) symbiosis on gas exchange, chlorophyll fluorescence, pigment concentration and water status of maize plants in pot culture under high temperature stress. Zea mays L. genotype Zhengdan 958 were cultivated in soil at 26/22°C for 6 weeks, and later subjected to 25, 35 and 40°C for 1 week. The plants inoculated with the AM fungus Glomus etunicatum were compared with the non-inoculated plants. The results showed that high temperature stress decreased the biomass of the maize plants. AM symbiosis markedly enhanced the net photosynthetic rate, stomatal conductance and transpiration rate in the maize leaves. Compared with the non-mycorrhizal plants, mycorrhizal plants had lower intercellular CO2 concentration under 40°C stress. The maximal fluorescence, maximum quantum efficiency of PSII photochemistry and potential photochemical efficiency of mycorrhizal plants were significantly higher than corresponding non-mycorrhizal plants under high temperature stress. AM-inoculated plants had higher concentrations of chlorophyll a, chlorophyll b and carotenoid than non-inoculated plants. Furthermore, AM colonization increased water use efficiency, water holding capacity and relative water content. In conclusion, maize roots inoculated with AM fungus may protect the plants against high temperature stress by improving photosynthesis and water status.  相似文献   

2.
The effect of arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on growth, water status, chlorophyll concentration and photosynthesis in maize (Zea mays L.) plants was investigated in pot culture under low temperature stress. The maize plants were placed in a sand and soil mixture at 25°C for 7 weeks, and then subjected to 5°C, 15°C and 25°C for 1 week. Low temperature stress decreased AM root colonization. AM symbiosis stimulated plant growth and had higher root dry weight at all temperature treatments. Mycorrhizal plants had better water status than corresponding non-mycorrhizal plants, and significant differences were found in water conservation (WC) and water use efficiency (WUE) regardless of temperature treatments. AM colonization increased the concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b. The maximal fluorescence (Fm), maximum quantum efficiency of PSII primary photochemistry (Fv/Fm) and potential photochemical efficiency (Fv/Fo) were higher, but primary fluorescence (Fo) was lower in AM plants compared with non-AM plants. AM inoculation notably increased net photosynthetic rate (Pn) and transpiration rate (E) of maize plants. Mycorrhizal plants had higher stomatal conductance (gs) than non-mycorrhizal plants with significant difference only at 5°C. Intercellular CO2 concentration (Ci) was lower in mycorrhizal than that in non-mycorrhizal plants, especially under low temperature stress. The results indicated that AM symbiosis protect maize plants against low temperature stress through improving the water status and photosynthetic capacity.  相似文献   

3.
The influence of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on characteristics of growth, photosynthetic pigments, osmotic adjustment, membrane lipid peroxidation and activity of antioxidant enzymes in leaves of tomato (Lycopersicon esculentum cv Zhongzha105) plants was studied in pot culture under low temperature stress. The tomato plants were placed in a sand and soil mixture at 25°C for 6 weeks, and then subjected to 8°C for 1 week. AM symbiosis decreased malondialdehyde (MDA) content in leaves. The contents of photosynthetic pigments, sugars and soluble protein in leaves were higher, but leaf proline content was lower in mycorrhizal than non-mycorrhizal plants. AM colonization increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in leaves. The results indicate that the AM fungus is capable of alleviating the damage caused by low temperature stress on tomato plants by reducing membrane lipid peroxidation and increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the cold tolerance of tomato plant, which increased host biomass and promoted plant growth.  相似文献   

4.
The aim of this study is to investigate the effects of arbuscular mycorrhizal fungi (AMF) on garlic plants growth and the uptake of selenium (Se). Garlic plants were grown in the pots inoculated with Glomus fasciculatum and G. mosseae and maintained in a greenhouse. Three weeks after planting, the pots had received different concentrations of Se (5, 10, 15, 20, 25 mg kg?1 of soil) in the form of selenium dioxide (SeO2) at 3 weeks intervals up to 12 weeks. For physiological and biochemical analysis, the samples were randomly collected from five plants of each experiment. Maximum AM infection, spore population and plant biomass were observed in the roots of mycorrhizal-mediated plants without Se, and they were gradually declined in both mycorrhizal and non-mycorrhizal (NM) plants with increasing concentrations of Se. Among the two Glomus species tested, G. fasciculatum-mediated plants showed higher AM infection, spore population and plant biomass than G. mosseae. No differences were observed for the uptake of Se in mycorrhizal plants and NM plants. However, NM plants uptake more Se than mycorrhizal plants. Higher contents of total chlorophyll and sugars were observed in plants inoculated with G. fasciculatum without Se and they were decreased in the presence of Se. In contrast, increased amount of glutathione peroxidase was observed at increasing concentrations of Se up to 20 mg kg?1. High-performance liquid chromatography data revealed that SeO2 converted to organic form of Se as γ-glutamyl-Se-methylselenocysteine. These results are basis for further investigations on the role of AMF on plant growth and uptake of Se in crop plants.  相似文献   

5.
The influence of the arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on characteristics of growth, membrane lipid peroxidation, osmotic adjustment, and activity of antioxidant enzymes in leaves and roots of maize (Zea mays L.) plants was studied in pot culture under temperature stress. The maize plants were placed in a sand and soil mixture under normal temperature for 6 weeks and then exposed to five different temperature treatments (5oC, 15oC, 25oC, 35oC, and 40oC) for 1 week. AM symbiosis decreased membrane relative permeability and malondialdehyde content in leaves and roots. The contents of soluble sugar content and proline in roots were higher, but leaf proline content was lower in mycorrhizal than nonmycorrhizal plants. AM colonization increased the activities of superoxide dismutase, catalase, and peroxidase in leaves and roots. The results indicate that the AM fungus is capable of alleviating the damage caused by temperature stress on maize plants by reducing membrane lipid peroxidation and membrane permeability and increasing the accumulation of osmotic adjustment compounds and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the extreme temperature tolerance of maize plant, which increased host biomass and promoted plant growth.  相似文献   

6.
Wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici and wilt of brinjal caused by Fusarium solani are very common in different agricultural fields of West Bengal, India. The study on the effect of salicylic acid (SA) on in vitro growth of the pathogens revealed that SA completely checks the growth at 0.7 mM concentration and above. On the other hand, the percentage of mycorrhisation in the host plants with an arbuscular mycorrhizal (AM) fungus, Glomus fasciculatum was found to be decreased in the presence of SA in the plants with or without pathogenic infection. Treatment of tomato and brinjal plants either singly with AM fungus or with SA (0.5 and 1.0 mM) and also with their combined treatment showed amelioration of plant height, length of root, fresh weight of root and fresh weight of plants. However, the AM fungus-treated plants showed highest growth responses. The result also reveals that integrated treatment with AM plus SA has significant effect on reduction of infection where application of AM + SA (1.0 mM) resulted in 67.16 and 69.70% reduction of fusarial wilt infection in tomato and brinjal plants, respectively.  相似文献   

7.
Medicago sativa L. is the most important forage crop in arid and semi-arid areas, where increased salinity is a major factor limiting plant growth and crop productivity. The role of arbuscular mycorrhizal (AM) fungus Glomus viscosum H.T. Nicolson strain A6 in protecting alfalfa plants from salt stress, induced by sodium chloride (NaCl), was studied in two ways. Firstly, the root systems of 3-month old M. sativa plants, both mycorrhizal (AM+) and non-mycorrhizal (non-AM) (M. sativa L. var. icon), were placed in solutions of increasing salt concentrations (0, 50, 100, 150, 200 mM NaCl) to study the wilting response. G. viscosum improved the tolerance to salinity stress and the benefit was expressed in terms of the time required to reach the T4 stage in the wilting experiment. Secondly, to evaluate the ability of the Glomus-alfalfa symbiosis to tolerate salt, a pot experiment was set up in a glasshouse in which 3-month old alfalfa plants (M. sativa var. icon) were grown in a peat substratum at three salinity levels (0, 100, 150 mM NaCl). The AM symbiosis stimulated plant height, leaf area, root density, fresh and dry plant weight under saline conditions. Furthermore, proline accumulation was higher in mycorrhizal M. sativa plants than in non-mycorrhizal plants under conditions of salt stress. These and other results indicated that the micropropagated selected clone of M. sativa var. icon, when in symbiosis with G. viscosum H.T. Nicolson strain A6, exhibited better growth and physiological activities under saline conditions than non-AM plants. The AM+ plants also had lower sodium and chloride concentrations in tissues than non-AM plants.  相似文献   

8.
Legumes can host rhizobia and mycorrhizal fungi, and this triple symbiosis might be exploited to improve saline soil fertility. Therefore, a greater understanding of the interaction of rhizobia and arbuscular mycorrhizal fungus during legume growth in saline soil is required. We investigated the efficiency of salt tolerance conferred by rhizobia in mycorrhizal Sesbania cannabina. Greenhouse experiments were conducted in which S. cannabina plants inoculated with Glomus mosseae BGC NM03D (GM), and two rhizobia strains Agrobacterium pusense YIC4105 (4105) and Neorhizobium huautlense YIC4083 (4083), were exposed to 100 and 200 mM NaCl. Under 200 mM NaCl stress, plants inoculated with 4105, rather than 4083, showed significant increases in shoot and root dry mass compared with non-inoculated plants. Simultaneously, a significant increase over GM-inoculated plants in mycorrhizal colonization and dependency was recorded for 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. In addition, under NaCl stress, significant increases in the number and mass of nodules, nitrogenase activity, and leghemoglobin content of nodules occurred in 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. Furthermore, the activities of antioxidant enzymes in rhizobia-inoculated plants were significantly higher in the GM + 4105 group than the 4083 + GM group. The malondialdehyde content of plants from the 4105 + GM group was significantly lower than in the 4083 + GM group. Thus, the results revealed a synergistic relationship among the 4105 and GM in alleviating salt stress in S. cannabina. Salt-tolerant rhizobia might improve the salinity tolerance of S. cannabina by enhancing the antioxidant system.  相似文献   

9.
The value of plant provenance (plant origin) is well-known phenomena in woody plants, but less is known in herbaceous plants (perennials). This study with common cyclamen (Cyclamen purpurascens Mill.) was conducted to reveal the importance of specific environmental site properties of plant origin for plant growth and plant quality in the next years. The plants were observed in years 2013 and 2014, more than 10 years after removing and replanting them from the original sites. Morphological characteristics of plants were evaluated by measuring the length and the width of plant rosettes, whereby plants originated from different sites did not show any significant differences. Additionally, the pigment composition, flavonol and anthocyanin content of plant leaves were evaluated. Plants removed from sunny sites showed significantly lower chlorophyll values (total chlorophyll, chlorophyll a) in the both observed years; lower carotenoid and total pigment values were measured only in year 2013. The prevailing anthocyanin in cyclamen leaves was malvidin-3,5-diglucoside with 57.28 µg l?1 FW in the year 2013 and with 103.68 µg l?1 FW in the year 2014. Plants originated from the sunny sites accumulated in 2013 significantly more malvidin-3,5-diglucoside in comparison with plants from shady sites of origin. The major substances from the flavonol group were quercetin-3-O-rutinoside and quercetin-dirhamnosyl-glucoside in both analysed years. The cyclamen leaves originated from sunny sites contained in 2013 significant more quercetin-dirhamnosyl-glucoside than cyclamen leaves from shady sites. The results of the study show that different stress parameters (irradiation and water supply in specific year) have a significant impact on the morphological and also internal parameters of cyclamen leaves.  相似文献   

10.
The symbiosis of plants with arbuscular mycorrhizal fungi (AMF) may become parasitic if the cost:benefit ratio (carbon:phosphorus ratio) increases. In case of mycorrhizal parasitism, a plant may prevent growth depression through the reduction of root colonization as a form of control over the symbiosis. In this greenhouse study, we attempted to manipulate the cost:benefit ratio of the arbuscular mycorrhizal symbiosis by shading and/or phosphorus (P) fertilization in the differentially mycotrophic plant species Hieracium pilosella and Corynephorus canescens. By repeated sampling of soil cores, we assessed the temporal progress of plant investment towards mycorrhizal structures as a measure of plant control over the AMF. Unexpectedly, we found no obvious treatment effects on mycorrhizal growth dependency (MGD), most likely caused by constant N-limitation in AM plants being enhanced by P-fertilization and shade probably not exacerbating plant C-budget for AMF. This highlights the importance of N:P:C stoichiometry for the outcome of the symbiosis. Nevertheless, we found possible control mechanisms in shaded H. pilosella, with considerably higher resource investments into root than into hyphal growth, while root colonization was only marginally suppressed. This control only manifested after 4 weeks of growth under potentially detrimental conditions, emphasizing the importance of time in plant control over the arbuscular mycorrhizal symbiosis. In contrast, the less mycotrophic C. canescens did not exhibit obvious changes in mycorrhizal investments in reaction to shading and P-fertilization, possibly because the low mycotrophy and AMF colonization already imposes a functioning control mechanism in this species. Our study suggests that highly mycotrophic plants may have a stronger need to keep AMF in check than less mycotrophic plants, which may have implications for the role of mycotrophy in the outcome of symbiotic interactions in natural situations.  相似文献   

11.
Water deficit limits plant growth and yield. Arbuscular mycorrhizal (AM) symbiosis is viewed as one of the several methods to improve growth under water deficit. The present study investigated the growth performance in relation to water deficit in two cultivars (“H2” and “660”) of AM treated macadamia (Macadamia tetraphylla L.) plants. AM treatment significantly improved the growth in macadamia plants that have been subjected to water deficit (7 % soil water content) for 14 days. Leaf water content (LWC) and maximum quantum yield of PSII (Fv/Fm) in AM-associated plants were maintained better than those in the control (well-watered) plants. A positive correlation was observed between LWC and Fv/Fm in “H2” cultivar. AM treatment enhanced proline and soluble sugar content in “H2” cultivar under water deficit stress. In contrast, only soluble sugars were accumulated in the AM-associated plants of “660” cultivar under water deficit stress. The study concludes that soluble sugars and proline are involved as key signals of osmoregulation defense response, improve water relation in plant tissues, and thereby resulting in improved growth in AM-associated macadamia plants.  相似文献   

12.
Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non‐AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non‐AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non‐AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress.  相似文献   

13.
An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 - to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.  相似文献   

14.
旱地农田入侵杂草三叶鬼针草(Bidens pilosa L.)与摩西球囊霉(Glomus mosseae)(AM真菌)经常形成长效的共生体,该霉菌对三叶鬼针草的入侵能力起到促进作用,但机理并不清楚。盆栽试验对正常浇水、中度干旱和重度干旱条件下接种AM真菌的三叶鬼针草植株与未接种植株之间叶片丙二醛(MDA)含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸氧化酶(ASP)和过氧化物酶(POD)等保护酶活性进行了比较研究。结果表明,干旱胁迫导致三叶鬼针草叶片内MDA含量升高,SOD、CAT、ASP和POD的活性升高;正常浇水条件下,接种G. mosseae 对MDA含量,SOD、ASP和CAT活性影响不显著;中度干旱条件下,接种没有显著影响ASP活性,但对SOD和CAT活性影响显著;在处理前期(7,14,21d)POD活性影响不显著,在处理后期(28,35d)接种植株显著低于未接种植株;重度干旱条件下,未接种植株MDA含量、CAT活性显著高于接种植株,POD活性差异不显著。ASP活性在21d前差异不显著,之后,未接种植株显著高于接种植株。因此,AM真菌G. mosseae 有效地降低了干旱胁迫对三叶鬼针草的伤害程度,随着土壤含水量的严重亏缺和胁迫时间的延长,摩西球囊霉对三叶鬼针草的保护作用逐渐减弱。由于三叶鬼针草和AM真菌之间普遍存在着共生关系,该共生关系可能是三叶鬼针草入侵能力强的关键生物因子之一。  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi form an intimate symbiosis with roots of more than 80% of land plants without eliciting a significant defense response, and how they do so is yet to be determined. Typically, plants mount a defense response upon sensing chitin in fungal walls, and to counteract this response, plant-pathogenic fungi secrete small effector proteins with chitin-binding LysM domains. In the AM fungus, Rhizophagus irregularis, a small, putatively-secreted LysM protein, which we refer to as RiSLM, is among the most highly expressed effector-like proteins during symbiosis. Here, we show that RiSLM expression is reduced during non-functional symbiosis with Medicago mutants, mtpt4-2 and vapyrin. We demonstrate that RiSLM can bind to both chitin and chitosan, and we model the protein-ligand interaction to identify possible binding sites. Finally, we have identified RiSLM homologs in five published R. irregularis isolate genomes and demonstrate that the gene is subject to a high rate of evolution and is experiencing positive selection, while still conserving putative function. Our results present important clues for elucidating a role for a LysM effector, RiSLM, in AM symbiosis.  相似文献   

16.
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg?1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.  相似文献   

17.
18.
High temperature is an environmental stress which destroys agricultural crops and inhibits their growth and productivity. The aim of current investigation was to examine the role of selenium (Se) on cucumber (Cucumis sativus L.) cv. Sahil plant growth, physio-biochemical and yield attributes under heat stress (HS) in controlled conditions. Plants were grown under normal temperature (NT; 28/18 °C day/night) from sowing to 32 days after sowing (DAS). All plants were foliar-sprayed with Se (8 µM) at flower-initiation stage (32-DAS) and heat stress (HS; 40/30 °C day/night) was induced from 35-DAS to entire duration of the experiment (75-DAS). Data regarding growth, physio-biochemical and yield traits were measured. Heat stress decreased growth traits, total chlorophyll contents, chlorophyll fluorescence parameters, photosynthesis (Pn), stomatal conductance (g s), transpiration rate (E), antioxidant enzyme activities, membrane stability index (MSI) and yield-related attributes, while increased intercellular CO2 (Ci), ROS production, lipid peroxidation (LPO), non-photochemical quenching (NPQ) and compatible solutes. Exogenous application of Se mitigated HS-induced injurious effects by improving growth components, Pn, g s, E, chlorophyll content, chlorophyll fluorescence parameters, antioxidant enzyme activities, level of osmolytes, MSI and yield attributes and reducing ROS, LPO and NPQ. Selenium reversed heat-induced oxidative damage by strengthening antioxidative mechanism, which resulted in higher scavenging of ROS, thereby minimizing LPO. It is suggested that Se-induced improvement in Pn, growth and productivity associated traits under HS is linked with enhanced antioxidant activities and osmolytes accumulation. In addition, Se applied at flower initiation is highly effective in alleviating heat damage in cucumber.  相似文献   

19.
Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A 15N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, 15N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.  相似文献   

20.
The aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied. Results showed that only wild-type tomato plants responded positively to mycorrhizal inoculation, while AM symbiosis was not observed to have any effect on plant development in sitiens plants grown under well-watered conditions. The application of ABA to sitiens plants enhanced plant growth both under well-watered and drought stress conditions. In respect to sitiens plants subjected to drought stress, the addition of ABA had a cumulative effect in relation to that of inoculation with G. intraradices. Most of the genes analyzed in this study showed different regulation patterns in wild-type and sitiens plants, suggesting that their gene expression is modulated by the plant ABA phenotype. In the same way, the colonization of roots with the AM fungus G. intraradices differently regulated the expression of these genes in wild-type and in sitiens plants, which could explain the distinctive effect of the symbiosis on each plant ABA phenotype. This also suggests that the effects of the AM symbiosis on plant responses and resistance to water deficit are mediated by the plant ABA phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号