首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

2.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

3.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

4.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

5.
Plasma membrane-associated ATPase obtained from cauliflower (Brassica oleraceae L.) florets isolated and assayed by several different procedures was stimulated 150 to 400% by K+. In contrast, winter wheat (Triticum aestivum L. cv. Kharkov 22 MC) shoot and root ATPase obtained by the same methods exhibited only 10 to 25% stimulation by K+. The level of K+-stimulation of the wheat enzyme was not significantly increased by purifying the crude microsomal membrane fraction using sucrose density gradients. ATPase associated with density gradient-purified cauliflower membranes was inhibited by Ca2+, high ATP concentration in the presence of low Mg2+, and by several metabolic inhibitors. In contrast, the wheat enzyme was largely unaffected by all of these treatments. The plasma membranes of intact wheat and cauliflower cells gave a positive reaction with the plasma membrane-specific, phosphotungstic acid-chromic acid stain (PACP). A high proportion of the cauliflower membrane vesicles in the putative plasma membrane-enriched fraction stained with PACP, whereas only a small proportion of the wheat membrane vesicles reacted positively with PACP. These results indicate that a plasma membrane-enriched fraction has been isolated successfully from cauliflower floret tissue, but that none of the procedures used effectively separate plasma membranes from homogenates of wheat shoots and roots.  相似文献   

6.
A new simple procedure has been developed for the purification of plasma membranes from rabbit kidney microsomes which yields a three- to fourfold increase in the specific activity of Na+-K+-adenosine triphosphatase (ATPase). The procedure differs from previous methods with deoxycholate or other detergents and does not change the molecular activity of the ATPase. The K+-dependent p-nitrophenylphosphatase activity of the native Na+-K+-ATPase is controlled more effectively by Mg2+ in the presence of K+ at concentrations higher than that of Mg2+, and by K+ in the presence of Mg2+ at concentrations higher than that of K+. The enzyme in its Mg2+-regulating state, which shows K+-saturation curves with a Hill coefficient of 1, is less sensitive to ouabain (I0.5 = 90 μM) and corresponds to the enzyme conformation reported previously which is inhibited by the concurrent presence of Na+ and ATP or of Na+ and oligomycin (I0.5 is the midpoint of the saturation curve). The enzyme in its K+-regulating state, which shows K+-saturation curves with a Hill coefficient of 2, is more sensitive to ouabain inhibition (I05 = 8 μM) and corresponds to the enzyme conformation which is stimulated by the concurrent presence of Na+ and ATP or of Na+ and oligomycin. There appear to be two conformations of the enzyme that are regulated by Mg2+ binding on the inhibitory sites of the enzyme.  相似文献   

7.
Amyloplast envelope membranes isolated from cultured, white-wild cells of sycamore (Acer pseudoplatanus L.) have been found to contain a Mg2+-ATPase, ranging in specific activity from 5 to 30 nanomoles per minute per milligram protein. This ATPase hydrolyzes a broad range of nucleoside triphosphates, whereas it hydrolyzes nucleoside mono- and diphosphates poorly, if at all. The ATPase activity was stimulated by several divalent cations, including Mg2+, Mn2+ and Ca2+, whereas it was not affected by Sr2+, K+, or Na+. The Km for total ATP was 0.6 millimolar, and the activity showed a broad pH optimum between 7.5 and 8.0. The ATPase was insensitive to N,N′-dicyclohexylcarbodiimide and oligomycin, but it was inhibited by vanadate. All these characteristics are basically similar to those reported previously for the Mg2+-ATPase of the chloroplast inner-envelope membrane. Likewise, the amyloplast envelope enzyme was shown to be located specifically on the inner envelope membrane. The amyloplast envelope membranes were chemically modified with a series of unique affinity labeling reagents, the adenosine polyphosphopyridoxals (M Tagaya, T Fukui 1986 Biochemistry 25: 2958-2964). About 90% of the ATPase activity was lost when the envelope membranes were preincubated with 0.1 millimolar adenosine triphosphopyridoxal. Notably, the enzyme was protected completely from inactivation in the presence of its substrate, ATP. In contrast, both adenosine diphosphopyridoxal and pyridoxal phosphate caused much less of an inhibitory effect. This greater relative reactivity of the triphosphopyridoxal analog is similar to that reported previously with Escherichia coli F1 ATPase (T Noumi et al. 1987 J Biol Chem 262: 7686-7692).  相似文献   

8.
Erythrocyte plasma membranes of non-insulin dependent diabetic humans (NIDDM) and healthy humans were prepared by hypotonic lysis. The specific activity of (Na+–K+)-ATPase of NIDDM membranes, both in the absence and presence of digoxin were lower than the specific activity of normal enzymes (83.6 percent and 74.0 percent of the normal enzyme respectively). Addition of digoxin decreased the activity of this enzyme (38.0 percent in NIDDM and 30.0 percent in normal enzyme).Although the affinity of the pump for ATP was similar in both membranes of NIDDM and normal humans (Km for ATP=19.9±0.24M ATP and 20.0±0.21 M ATP respectively), the Vmax of NIDDM membranes was more than 20 percent lower than that of the normal enzyme. The specific activity of Mg2+-dependent Ca2+-pumping ATPase (Ca2+–Mg2+)-ATPase) of NIDDM membrane was lower than 80 percent of the specific activity of the normal enzymes. While the affinity of the pump for ATP was lower in the membranes of NIDDM (Km for ATP=50.0±4.3 M ATP) in comparison to normal membranes (Km for ATP=63.1±38M ATP), the Vmax of NIDDM membranes was similar to the normal enzyme. Altogether, these findings suggest that both the (Na+–K+)-ATPase and Ca2+-pumping ATPase of NIDDM membranes are less functional than the enzymes in normal erythrocytes.  相似文献   

9.
Membrane-bound ATPase activities in chloroplasts of Euglena were examined. Ca2+- and Mg2+-dependent activities were relatively high in membrane preparations and could not be further activated by a number of procedures. The enzyme was found to be highly specific for purine nucleotides and was inhibited by the usual inhibitors of photophosphorylation. Km values of Ca2+ and Mg2+ ATPase for ATP were 2.5 and 2.1 mM, respectively. Both activities were competitively inhibited by ADP and inorganic phosphate. A relationship was found between Ca2+- or Mg2+-dependent ATPase activities and chloroplast completeness. The possibilities that these activities result from one enzyme depending on Ca2+ or Mg2+ or from two different enzymes are discussed.  相似文献   

10.
Sealed microsomal vesicles were prepared from corn (Zea mays, Crow Single Cross Hybrid WF9-Mo17) roots by centrifugation of a 10,000 to 80,000g microsomal fraction onto a 10% dextran T-70 cushion. The Mg2+-ATPase activity of the sealed vesicles was stimulated by Cl and NH4+ and by ionophores and protonophores such as 2 micromolar gramicidin or 10 micromolar carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP). The ionophore-stimulated ATPase activity had a broad pH optimum with a maximum at pH 6.5. The ATPase was inhibited by NO3, was insensitive to K+, and was not inhibited by 100 micromolar vanadate or by 1 millimolar azide.

Quenching of quinacrine fluorescence was used to measure ATP-dependent acidification of the intravesicular volume. Quenching required Mg2+, was stimulated by Cl, inhibited by NO3, was insensitive to monovalent cations, was unaffected by 200 micromolar vanadate, and was abolished by 2 micromolar gramicidin or 10 micromolar FCCP. Activity was highly specific for ATP. The ionophore-stimulated ATPase and ATP-dependent fluorescence quench both required a divalent cation (Mg2+ ≥ Mn2+ > Co2+) and were inhibited by high concentrations of Ca2+. The similarity of the ionophore-stimulated ATPase and quinacrine quench and the responses of the two to ions suggest that both represent the activity of the same ATP-dependent proton pump. The characteristics of the proton-translocating ATPase differed from those of the mitochondrial F1F0-ATPase and from those of the K+-stimulated ATPase of corn root plasma membranes, and resembled those of the tonoplast ATPase.

  相似文献   

11.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

12.
Properties of a plasmalemma phosphatase of the maize scutellum, tentatively identified as an ATPase in a previous paper, were investigated. Fresh and frozen-thawed scutellum slices, that had been treated with 10 mM HCl to destroy acid phosphatases, were used as a source of enzyme. With the exceptions of the Na+, K+ and dinitrophenol experiments, the two kinds of slices gave similar results. ATP and CTP were the best substrates for the enzyme followed by TTP, UTP, CDP, ADP and GTP. UDP, nucleoside monophosphates, sugar phosphates, inorganic pyrophosphate and p-nitrophenyl phosphate were relatively ineffective as substrates. The Km's for ATP and ADP were 0.65 and 5 mM, respectively, but the two substrates gave the same Vmax (49.8 μmol Pi/hr/g slices). Previously, it was shown that the products of ATP hydrolysis are ADP, AMP and Pi. Using these previous results and from the time courses of ATP disappearance from the bathing solution and the appearance of Pi and ADP, it was concluded that ATP and ADP were hydrolysed by the same enzyme. The ATPase was not inhibited by oligomycin. N-N′-Dicyclohexylcarbodiimide (DCCD) was a poor inhibitor, and a water soluble analog of DCCD, 1-ethyl-3 (3 dimethyl-aminopropyl)-carbodiimide, gave only 33% inhibition. The relative effectiveness of divalent cations for stimulating ATPase activity was Mn2+ > Mg2+ ? Ca2+ > Co2+ · Na+ and K+ gave a small additional stimulation in the presence of Mg2+. However, Na+ and K+ gave a much greater stimulation when no divalent cation was added, and this occurred only when fresh slices were used. Dinitrophenol also increased ATPase activity only when fresh slices were used. Since it is likely that both the uptake of Na+ and K+ and the action of dinitrophenol would lower the electrochemical gradient of protons across the plasmalemma, the different results obtained with fresh slices indicate that the ATPase in these slices was under the constraint of a proton gradient.  相似文献   

13.
Activities and some properties of microsomal ATPases have been studied in developing human placenta. The enzyme activities (Na+ + K+ + Mg2+, Mg2+, and Ca2+ dependent) in the placenta increase steadily with gestational age until the 18th to 21st week, and decrease in the second half of pregnancy. Mg2+-dependent and Na+ + K+ + Mg2+-dependent ATPases possess nearly the same Km (apparent) for ATP, while the Ca2+-dependent enzyme shows a different one. Mg2+-dependent ATPase shows higher substrate affinity than Ca2+-dependent ATPase, although the Vmax of the Mg2+-dependent enzyme is lower than that of the latter. However, for each enzyme, the Km remains almost constant and Vmax varies during ontogenic development. Vmax of the enzymes decline at term. The enzymes are heat-labile, unaffected by amino acids, namely, l-phenylalanine, l-leucine, and l-tryptophan, and deoxycholate inhibits the enzyme activities by about 50%.  相似文献   

14.
《Phytochemistry》1986,26(1):65-69
In the presence of K+, the hydrolysis of ATP catalysed by the ATPase of corn plasma membrane showed negative cooperative kinetics. When the complexes of ATP and Mg2+, Mn2+, Ca2+ or Cd2+ were used as substrates, the catalysed hydrolysis changed to follow simple Michaelis-Menten kinetics. However, this change was not observed with Zn2+-ATP as the substrate. A substantial enhancement of the hydrolysis was observed only when the complexes of Mg2+ and Mn2+ were used. Kinetic parameter determination indicated that the enzyme exhibited a similar binding property but a different catalytic efficiency to Mg2+, Mn2+ and Ca2+-ATP. The enzyme formed a more stable but less reactive complex with Cd2+-ATP. The presence of aluminium ions competitively inhibited the membrane-catalysed hydrolysis of Mg2+-ATP, but showed no effect when free ATP was the substrate. This finding suggested that aluminium might bind in the vicinity of the Mg2+ of Mg2+-ATP in the active site of the enzyme. On the basis of these observed inhibitory effects, possible origins of metal ion toxicity to root plasma membrane ATPase activity are discussed.  相似文献   

15.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

16.
Labeling and isolation of plasma membranes from corn leaf protoplasts   总被引:24,自引:19,他引:5       下载免费PDF全文
A plasma membrane-enriched fraction has been isolated from corn leaf mesophyll protoplasts and its identity confirmed with the aid of an external label, diazotized [125I]iodosulfanilic acid. Gentle cell disruption enabled internal organelles to be maintained intact and thus facilitated separation from the plasma membrane. The plasma membrane-enriched fraction was devoid of chloroplast or mitochondrial markers, whereas markers for the endoplasmic reticulum and golgi indicated minimal contamination. The highly enriched plasma membrane fraction contained a Mg2+-dependent, K+-stimulated ATPase with a pH optimum near neutrality. The position of the membranes on sucrose density gradients indicates that the plasma membranes have characteristics similar to other plasma membrane fractions.  相似文献   

17.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   

18.
The Mg2+ dependent and Na+K+-activated ATPase activities of microsomal preparations from the rectum of Locusta migratoria were both stimulated, to varying extents, by crude extracts of the corpora cardiaca of this species. Mg2+ ATPase activity increased by approximately 549% whereas the hormonal stimulation of Na+K+-activated ATPase depended upon the concentration of sodium and potassium ions. At 100 mM Na+ and 20 mM K+, conditions which approximate to optimum for this enzyme system, Na+K+-activated ATPase activity increased by about 14%. At sub-optimum concentrations of these ions, i.e. 50 and 5 mM Na+ and K+ respectively, the increase in Na+K+-activated ATPase activity was about 205%. Ouabain at a concentration of 10?3 M completely abolished this stimulated activity and was consistently effective in partially reducing the stimulation of Mg2+ ATPase activity by corpora cardiaca extracts.  相似文献   

19.
Demonstration of a high affinity Ca2+ ATPase in rat liver plasma membranes   总被引:4,自引:0,他引:4  
Rat liver plasma membranes contained a high affinity Ca2+-ATPase which had an apparent half saturation constant of 0.2 μM for calcium. The Ca2+-ATPase was not stimulated by adding magnesium and/or calmodulin. Conversely, the addition of these substances diminished the calcium-stimulation of the ATPase. Orthovanadate (7 nM-2 mM), mitochondrial ATPase blockers (NaN3, KCN, dicyclohexylcarbodiimide), Na+, K+ and ouabain had no effect on the ATPase activity. The ATPase was separated from nonspecific divalent cation stimulatable ATPase (Mg2+-ATPase) by solubilization with Triton X-100 followed by a Sephadex G-200 column chromatography and showed an apparent molecular weight of 200,000.  相似文献   

20.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号