首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of three precursor types (tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMS) and polydimethylsilane (PDMS)) in the presence and absence of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) as additives. Silica and their derivatives were characterised with regard to mean pore diameter, specific surface area, pore size distribution (BET method), weight loss upon heating thermogramivemetric analysis (TGA), chemical composition Fourier transform infrared spectroscopy (FT-IR), and catalytic activities. Immobilisation yields based on the recovered lipase activity vary from 3.02 to 31.98% and the highest efficiency was attained when lipase was encapsulated using TEOS in the presence of the PEG. Further information was obtained by testing the derivatives in esterification reactions and a different reactivity profile was found. Better performance was obtained with derivatives containing lipase encapsulated within gels prepared with MTMS as precursor in the presence of PEG. This lipase preparation exhibits increased esterification activity (155 μmol g−1 min−1), up to of three times greater than that prepared with TEOS (52 μmol g−1 min−1), and almost twice that prepared with MTMS/PDMS (89 μmol g−1 min−1) as precursors.  相似文献   

2.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of the precursor tetraethoxysilane (TEOS) in the presence of polyethylene glycol (PEG) as additive. The properties of silica and their derivatives with regard to mean pore diameter, specific surface area, mean pore size, weight loss upon heating (thermogravimetric analysis, TGA) and 29Si and 13C NMR are reported. The pH optimum shifted from 7.8 to 6.7 and optimum temperature jumped from 36 to 60 °C upon enzyme encapsulation. Encapsulated lipase in presence of PEG (EN-PEG) exhibited higher stability in the range of 37–45 °C, but from 50 to 65 °C the EN-PEG was inactivated after seven cycles. Hydrolytic activity during long-term storage at room temperature decreased to 50% after 94 days. High diffusional resistance was observed for large oil concentration reducing hydrolytic effectiveness by 60% in the case of the encapsulated lipase. NMR, pore size and specific surface area data suggested an active participation of the lipase enzyme during gelling of the silica matrix. This lead to reduction of available Si–OH groups, larger pores and smaller surface area. Larger pores increase substrate diffusion that correlates well with higher hydrolytic activity of the TEOS–PEG sol–gel matrix encapsulated enzyme in comparison with other sol–gel supports.  相似文献   

3.
The lipase-catalyzed production of optically active (S)-flurbiprofen was carried out in a dispersion reaction-system induced by chiral succinyl β-cyclodextrin (suβ-CD). The optimal reaction conditions were 500 mM (R,S)-flurbiprofen ethyl ester ((R,S)-FEE), 600 units of Candida rugosa lipase per 1 mmol of (R,S)-FEE, and 1000 mM suβ-CD at 37 °C for 72 h. An extremely high enantiomeric excess of 0.98 and conversion yield of 0.48 were achieved in the dispersed aqueous phase reaction system containing chiral suβ-CD added as a dispenser and chiral selector. The inclusion complex formability of the immiscible substrate (S)- and (R)-form of FEE with suβ-CD was compared using a phase-solubility diagram, DSC, and 1H NMR. (S)-Isomer formed a more stable and selective inclusion complex with chiral suβ-CD. It was hydrolyzed much more selectively by lipase from C. rugosa, due to the selective structural modification through inclusion complexation with chiral suβ-CD.  相似文献   

4.
A novel method to prepare immobilized lipases derivatives is hereby proposed. Lipases are firstly adsorbed on supports having large internal surfaces covered by hydrophobic groups (e.g. polyacrylic resins covered by C18 moieties). Then, immobilized lipases are incubated in the presence of polyethyleneimine (PEI) at a pH value over the isoelectric point of the enzyme in order to cover the lipase surface with this polymer. In this way, we try to minimize all possible direct interactions between immobilized lipase and organic solvents when using these derivatives in anhydrous media.

Lipases from Rhizomucor miehie (RML) and Candida rugosa (CRL) were immobilized according to the proposed protocol. These derivatives were very active and very stable when catalyzing esterifications and transesterifications in anhydrous media. For example, RML derivatives exhibited a very high synthetic activity (more than 1000 Units/g immobilized biocatalyst) even when catalyzing the esterification of lauric acid with octanol at water activity values very close to zero. On the contrary, covalently immobilized derivatives exhibited a much lower synthetic activity under similar conditions (less than 10 Units/g of immobilized biocatalyst). Moreover, these new RML derivatives preserve 100% activity after incubation for 3 days in anhydrous butanone in the presence of molecular sieves. Under the same conditions, commercial immobilized RML lost more than 90% of activity in less than 10 min.  相似文献   


5.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

6.
The effect of sodium dodecyl sulfate (SDS) and Triton X-100 on the hydrolytic activity of lipases A and B from Candida rugosa has been studied. Lipase B is significantly more affected than lipase A by the presence of both surfactants; Triton X-100 produces a more deleterious effect than SDS with both isoenzymes. In addition, the stability of lipases A and B in the presence of different concentrations of SDS was investigated; lipase A was more stable than isoform B. Both isoenzymes were chemically modified by reaction of their amino groups with octanoyl chloride or activated polyethylene glycol (PEG, mol. wt. 5000). In all cases the modification produced a protective effect against denaturation by SDS. In particular, PEG5000-liPases A and B were significantly more stable (stabilization factor: 3-4) than the native enzymes at the surfactant concentrations tested.  相似文献   

7.
Lipases from Candida rugosa, Mucor javanicus and Rhizopus oryzae were respectively adsorbed on Amberlite XAD-7 followed by incubation in 2-propanol and then lyophilization. The activities of the immobilized enzymes were 1.6–3.4 times higher than those of the immobilized enzymes without incubation in the organic solvent before lyophilization for esterification of lauric acid (0.1 M) and 1-propanol (0.1 M) in isooctane at 37 °C. The immobilized C. rugosa lipase (Sigma) without the incubation did not show any activity but displayed considerable activity (19.8 μmol h−1 mg−1) after the incubation before lyophilization. Besides 2-propanol, acetone, 1-propanol and ethyl acetate were also found to be good solvents for treating M. javanicus lipase immobilized on Amberlite XAD-7 and acetone was the best among them. When incubated in isooctane at 25 °C for 120 h, the immobilized M. javanicus lipase prepared by incubation in acetone for 1 h before lyophilization retained 70% of its initial activity while the immobilized enzyme without the solvent treatment kept only 50% of its initial activity.  相似文献   

8.
植物遭受到昆虫取食、创伤及非生物胁迫时,会向环境中释放多种挥发性物质,直接或间接地帮助受胁迫植株抵抗伤害。同时,这些挥发性物质向附近的健康植株传递信息,以应对可能到来的侵害。硫化氢(H2S)作为细胞内气体信号分子提高植物对多种胁迫的抗性已有报道,本论文对H2S是否作为植物个体间传递信息的信号分子进行了研究。结果表明:40%PEG8000处理可以使谷子、白菜、番茄和拟南芥Col-0植株所在环境空气中H2S含量升高;谷子和拟南芥Col-0植株经PEG8000处理后,可以使邻近的非胁迫植株叶片的H2S含量升高和H2S响应基因表达变化,并诱导非胁迫植株气孔关闭;而拟南芥内源H2S产生酶基因LCD和DES1双基因突变体lcd/des1经PEG8000处理,不能引起空气中和邻近植物的H2S含量升高,不能诱导邻近植株气孔关闭。本论文表明,H2S可以作为植物个体间的信息传递分子;即受胁迫植物通过向周围环境中释放H2S,向邻近植株提供胁迫预警信息,可能对种群的生存有重要意义。  相似文献   

9.
The monodeacetylation of peracetylated-β-d-galactose (1) and peracetylated N-acetyl-β-d-glucosamine (2) by different lipases is here described. Lipases from different sources in an immobilized form were evaluated to find those that offer the higher activity and regioselectivity in the reactions. In the hydrolysis of 1, the lipase from Aspergillus niger was the most active one, although it hydrolyzed the anomeric position. Using the lipase from Candida rugosa, 30% yield of the corresponding 6-OH isomer was achieved. On the other hand, in the hydrolysis of 2, the lipase from A. niger was the most active and regioselective catalyst, producing more than 75% of the 6-OH derivative product.  相似文献   

10.
Maike Isermann   《Flora》2008,203(4):273-280
The study analysed the effects of shrub expansion on vegetation composition and plant species diversity in coastal grey dunes on the North Sea island Spiekeroog, comparing Rosa rugosa and Hippophaë rhamnoides. Species composition was recorded in plots of two spatial scales, 1 and 16 m2, considering the full range of shrub cover from less than 10 to almost 100%. Although R. rugosa and H. rhamnoides established and spread in the same grey dune environment, the vegetation of the two shrubland types was much different. While the H. rhamnoides plots were relatively species-rich, characterised by remnant grey dune vegetation with many small, often annual, light-demanding species except in the densest shrubs, the R. rugosa plots were clearly species-poorer due to the loss of many typical grey dune species, including only few shade-tolerant taxa. The total number of species, the number of herbaceous species and of species typical for grasslands decreased with increasing cover of H. rhamnoides and R. rugosa at both spatial scales. For the number of shrubs and shrubland species, hardly any significant effects of shrub cover were observed in R. rugosa, while there were positive effects in H. rhamnoides. Both the Shannon index and evenness decreased with increasing cover of the two shrub species at both spatial scales. Here, the decline in species diversity was more improved in R. rugosa than in H. rhamnoides.  相似文献   

11.
Lipase inhibitors have generated a great interest because they could help in the prevention or the therapy of lipase-related diseases. Therefore, the aim of the work was to evaluate by HPLC, and using Candida rugosa lipase as model, the inhibitory effect of several saponins: β-aescin, digitonin, glycyrrhizic acid (GA) and Quillaja saponin (QS); flavonoids: 3-hydroxyflavone, 5-hydroxyflavone, (±)-catechin and kaempferol; and alkaloids: aspidospermine, papaverine, physostigmine, pilocarpine, raubasine, rescinnamine, reserpine and trigonelline.

The inhibition produced by most of these compounds is described here for the first time. Saponins appeared very active, being β-aescin and digitonin the most active compounds (IC50 = 0.8–2.4 × 10−5 M). The inhibitory activity of flavonoids was lower than that of saponins (except GA), and (±)-catechin and kaempferol were the most active. Alkaloids was the most heterogeneous group assayed, varying from rescinnamine, with an IC16 similar to that of digitonin, to papaverine and others which showed almost no inhibition.

In conclusion, β-aescin, digitonin, kaempferol or (±)-catechin, strong lipase inhibitors with a low toxicity and present herbal drugs used for lipase-related diseases such as acne or ulcer, are promising candidates for the prevention or the treatment of these diseases.  相似文献   


12.
Resonance Raman spectroscopy was used to interrogate the heme active site of horseradish peroxidase (HRP) lyophilized in the presence and absence of the lyoprotectant poly(ethylene glycol) (PEG; FW 5000; 0-80% w/w) suspended in acetone, chloroform, or acetonitrile. In aqueous solution, Fe(3+)HRP is characterized by a five-coordinate high-spin (5-c HS) heme system. The structure of the heme-active site of HRP in all solvents is perturbed by co-lyophilization of HRP with PEG. Heme active site structural changes are consistent with coordination of water in the distal axial coordination site of the ferric heme iron and disruption of the hydrogen-bond network when the protein is lyophilized in the presence of PEG (>or=60% w/w) in all of the solvent systems studied. Similar active site structural changes were previously observed for HRP in benzene and attributed to a change in the reaction mechanism for HRP in benzene. (Mabrouk, P. A.; Spiro, T. G. J. Am. Chem. Soc. 1998, 120, 10303-10309.) Thus, PEG is proposed to increase the catalytic activity of HRP in nonaqueous media by locking the heme active site into a structure that functions through an alternative catalytic pathway in nonaqueous media.  相似文献   

13.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   

14.
1986. In vitro excystrnent of the metacercaria of Plagiorchis species 1 (Trematoda, Plagiorchiidae). International Journal for Parasitology 16: 641–645. An optimal hatching success of Plagiorchis species 1 metacercariae (100% excystment, active metacercariae, mean hatching speed 2–10 min, lowest variance of the mean speed) was observed after pretreatment in an HCl-pepsin solution at pH 2.0 and 42°C for 60–70 min, and incubation in a hatching medium at 42 °C and pH 7.3–8.0 with a bile salt (Nacholate), NaHCO3, and a reductant (cysteine with 100% N2). The minimum conditions for nearly 100% excystment with lower hatching speeds and higher variances were the presence of NaHCO3, an oxygen concentration reduced to about 3% in the gas phase, pH> 7.3 and a temperature near 30°C if Na-cholate was absent, or in the presence of the bile salt, a phosphate buffer at pH> 5.0 and room temperature only. Obviously some hatching factors acted interchangeably with compensation for missing stimuli by others. The effect of the bile salt was comparable with that of other surfactants. The metacercariae excysted in nonenzymatic media, which implies an active hatching mechanism.  相似文献   

15.
Candida rugosa lipase (EC 3.1.1.3.) was immobilized in a hydrophilic polyurethane foam and used in the hydrolysis of olive oil, in H-hexane. The results obtained were compared with those from a previous study, in which the same lipase preparation was used in the esterification of ethanol with butyric acid.

The initial rate of hydrolysis increased exponentially with increasing olive oil concentration. In contrast, for the esterification reaction, Michaelis-Menten kinetics with inhibition by both substrates, had been observed.

The effect of medium viscosity, stirring conditions and size of immobilization particles could not explain the observed kinetics of the hydrolytic reaction. However, a direct relationship was observed between the log P values of the reaction medium and the initial rate of hydrolysis, i.e., activation of the immobilized Candida rugosa lipase appears to be promoted by a high hydrophobicity of the reaction medium.

In the case of the esterification reaction, no similar correlation was found.  相似文献   

16.
Bacon Ke  Thomas H. Chaney  Dan W. Reed 《BBA》1970,216(2):373-383
1. By means of Q-switched ruby-laser flash excitation, the photooxidation of P870 in the reaction-center complex isolated from Rhodopseudomonas spheroides takes place within 1 μsec. The reduction of photooxidized P870 in the dark follows a first-order kinetics, with a pseudo first-order rate constant of 1.85×108 l×mole-1×sec-1 and an activation energy of 6 kcal/mole.

2. Through an electrostatic interaction of the bacteriochlorophyll reaction-center complex and mammalian cytochrome c, an intimate contact between the two components resulted, and a collision-independent electron-transfer with a halftime of 25 μsec can be attained by laser-flash excitation. The absorbance changes at 870 and 550 nm indicated a good stoichiometry of the reaction. The oxidation of the c-type cytochrome in cells of Rps. spheroides (R-26 mutant) has a halftime of 12 μsec.

3. The portion of P870 which recovered rapidly was closely related to the mole ratio of cytochrome/P870. Complete recovery with a halftime of 25 μsec occurred when the cytochrome/P870 ratio was above approx. 10. At cytochrome/P870 ratios lower than 10, only the fraction of the reaction-center complex which have cytochromes bound at the active site can recover with the rapid decay time. Ultrafiltration measurements showed that each particle of the reaction-center complex can bind approx. 24 cytochrome molecules.

4. An electro static interaction is expected simply from the large difference between the isoelectric points of cytochrome c ( 10) and that of the reaction-center complex (4.1 measured by electro-focusing). The electro static interaction was further evidenced by the effects of pH, ionic strength, and by polylysine displacement of binding sites on the coupled oxidation of ferrocytochrome c by P870. From the limiting polylysine concentration giving complete blocking of cytochrome coupling, it was calculated that each reaction-center complex with a particle weight of 6.5×105 contained approx. 500 negative charges.

5. Arrhenius plot of the first-order rate constants vs. the reciprocal absolute temperature yielded an activation energy of 12 kcal/mole for the cytochrome/P870 reaction, which is presumably the energy needed for cytochrome to achieve the most favorable orientation for the rapid electron transfer. Below the freezing temperature of the sample, the cytochrome reaction appeared to be uncoupled. The temperature dependence is consistent with the effect of viscosity on the reaction rate.

6. Double flash excitations spaced 200 μsec apart showed that at a cytochrome/P870 ratio of 24, the first flash caused maximum oxidation, indicating that all the reaction-center particles have at least one cytochrome attached to the active site. However, only 60% of the particles have a second cytochrome closely attached and capable of undergoing the rapid electron transport.  相似文献   


17.
The sensitivity of the catalytic activities of the D. salina chloroplast coupling factor 1 (CF1) to chemical modification by N-ethylmaleimide has been investigated. (i) When D. salina thylakoid membranes are treated with N-ethylmaleimide, both photophosphorylation and the inducible CF1 ATPase activity are partially (approx. 60%) inhibited. The inhibition of both activities does not require the presence of a proton-motive force, and the inhibition of photophosphorylation is directly related to the N-ethylmaleimide-covalent modification of CF1 as shown by (a) the time-course for the inhibition and (b) the maximal extent of inhibition. (ii) Treatment of the purified, latent, D. salina CF1 with low concentrations of N-ethylmaleimide also results in the partial (approx. 60%) inhibition of the inducible ATPase activity (I50 ≈ 50 μM). The inhibition does not require the presence of the chemical modifier during the activation of the enzyme. (iii) N-ethylmaleimide-induced inhibition of the ATPase activity of either membrane-bound or solubilized CF1 is partially reversed by either (a) prolonged incubation at low concentrations of N-ethylmaleimide or (b) short incubation times at high concentrations of N-ethylmaleimide. The results are interpreted as indicating multiple binding sites on the D. salina CF1 that have different rates of reactivity with N-ethylmaleimide. Those sites (or site) that react rapidly with N-ethylmaleimide cause(s) an inhibition of both ATP synthase and ATPase activities, whereas those sites (or site) that react more slowly partially restore(s) the original-ATPase activity. The effects of N-ethylmaleimide on the catalytic activity of D. salina CF1 are probably mediated by N-ethylmaleimide-induced conformational changes of the enzyme.  相似文献   

18.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

19.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

20.
Though lipases are frequently applied in ester synthesis, fundamental information on optimal pH or substrate concentration, can almost only be found for the reverse reaction - hydrolysis. This study demonstrates that the pH-optima of lipase-catalysed esterifications differ significantly from the optima of the hydrolysis reaction. In the esterification of n-butanol and propionic acid with lipases of Candida rugosa (CRL) and Thermomyces lanuginosa (TLL) pH-optima of 3.5 and 4.25, respectively, were found. This is about 3-4 units (CRL) and 7 units (TLL) in pH lower than optimum for hydrolysis. Enzyme activity increased with increasing concentrations of protonated acid indicating that the protonated acid rather than the deprotonated form is substrate for esterification. The rate of esterification can be drastically increased by ensuring acid concentrations up to 1000 mmol L-1 for CRL and 600 mmol L-1 for TLL in the reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号