首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two reactions with suggested prebiotic relevance for peptide evolution, the saltinduced peptide formation reaction and the peptide chain elongation/stabilization on clay minerals have been combined in experimental series starting from dipeptides and dipeptide/amino acid mixtures. The results show that both reactions can take place simultaneously in the same reaction environment and that the presence of mineral catalysts favours the formation of higher oligopeptides. These findings lend further support to the relevance of these reactions for peptide evolution on the primitive earth. The detailed effects of the specific clay mineral depend both on the nature of the mineral and the reactants in solution.  相似文献   

2.
The ribosomal peptidyl transferase center is responsible for two fundamental reactions, peptide bond formation and nascent peptide release, during the elongation and termination phases of protein synthesis, respectively. We used in vitro genetics to investigate the functional importance of conserved 23S rRNA nucleotides located in the peptidyl transferase active site for transpeptidation and peptidyl-tRNA hydrolysis. While mutations at A2451, U2585, and C2063 (E. coli numbering) did not significantly affect either of the reactions, substitution of A2602 with C or its deletion abolished the ribosome ability to promote peptide release but had little effect on transpeptidation. This indicates that the mechanism of peptide release is distinct from that of peptide bond formation, with A2602 playing a critical role in peptide release during translation termination.  相似文献   

3.
An efficient peptide purification strategy is established, comprising the selective reaction of an N‐terminal N‐(methoxy)glycine residue of the peptide and isothiocyanato‐functionalized resins, and subsequent Edman degradation. These reactions take place in acidic media; in particular, the Edman degradation proceeds smoothly in media containing more than 50% trifluoroacetic acid (v/v). These acidic conditions offer increased solubility, making them advantageous for the purification of hydrophobic and aggregation‐prone peptides. The effectiveness of this method, together with scope and limitations, is demonstrated using model peptides and the practical purification of the loop region of the human dopamine D2 receptor long isoform (residues 240–272). Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Three chemical specific cleavage reactions, one for the carboxyl side of aspartyl peptide bonds, one for the carboxyl side of asparaginyl peptide bonds and another for the amino side of seryl/threonyl peptide bonds have been recently established. Additionally, these reactions simultaneously react on several post-translationally modified groups in peptides or proteins. The modified groups cover the external modifications N-formyl, N-acetyl, N-pyroglutamyi residues and C-terminal-alpha amide, as well as the internal modifications such as O-acetyl serine, phosphorylated serine/tyrosine, sulfonylated tyrosine, glycosylated serine/threonine and glycosylated asparagine. These three cleavage reactions relate to key amino acids for modifications, deamidation for asparagine, phosphorylation and acetylation for serine, and glycosylation for asparagine, serine and threonine. The chemical reactions on these modifications change the peptide mapping pattern, and information from these reactions may contribute characterization and location of post-translational modified groups in the protein.  相似文献   

5.
In this 'double-blind', randomized, placebo-controlled phase II trial, we compared an altered peptide ligand of myelin basic protein with placebo, evaluating their safety and influence on magnetic resonance imaging in relapsing-remitting multiple sclerosis. A safety board suspended the trial because of hypersensitivity reactions in 9% of the patients. There were no increases in either clinical relapses or in new enhancing lesions in any patient, even those with hypersensitivity reactions. Secondary analysis of those patients completing the study showed that the volume and number of enhancing lesions were reduced at a dose of 5 mg. There was also a regulatory type 2 T helper-cell response to altered peptide ligand that cross-reacted with the native peptide.  相似文献   

6.
Aza‐glycinyl dipeptides are useful building blocks for the synthesis of a diverse array of azapeptides. The construction of the aza‐glycine residue is however challenging, because of the potential for side reactions, such as those leading to formation of oxadiazalone, hydantoin and symmetric urea by‐products. Employing N,N′‐disuccinimidyl carbonate to activate benzophenone hydrazone, we have developed a more efficient approach for the synthesis of aza‐glycinyl dipeptides. Alkylation of the semicarbazone of the resulting protected aza‐glycinyl dipeptides using tetraethylammonium hydroxide and propargyl bromide provided an efficient entry into the aza‐propargylglycinyl peptide building blocks, which have served previously in various reactions including Sonogashira cross‐couplings, dipolar cycloadditions and intramolecular exo‐dig cycloadditions to furnish a variety of azapeptide building blocks. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.  相似文献   

8.
Autocatalytic sets of proteins   总被引:5,自引:0,他引:5  
This article investigates the possibility that the emergence of reflexively autocatalytic sets of peptides and polypeptides may be an essentially inevitable collective property of any sufficiently complex set of polypeptides. The central idea is based on the connectivity properties of random directed graphs. In the set of amino acid monomer and polymer species up to some maximum length, M, the number of possible polypeptides is large, but, for specifiable "legitimate" end condensation, cleavage and transpeptidation exchange reactions, the number of potential reactions by which the possible polypeptides can interconvert is very much larger. A directed graph in which arrows from smaller fragments to larger condensation products depict potential synthesis reactions, while arrows from the larger peptide to the smaller fragments depict the reverse cleavage reactions, comprises the reaction graph for such a system. Polypeptide protoenzymes are able to catalyze such reactions. The distribution of catalytic capacities in peptide space is a fundamental problem in its own right, and in its bearing on the existence of autocatalytic sets of proteins. Using an initial idealized hypothesis that an arbitrary polypeptide has a fixed a priori probability of catalyzing any arbitrary legitimate reaction to assign to each polypeptide those reactions, if any, which it catalyzes, the probability that the set of polypeptides up to length M contains a reflexively autocatalytic subset can be calculated and is a percolation problem on such reaction graphs. Because, as M increases, the ratio of reactions among the possible polypeptides to polypeptides rises rapidly, the existence of such autocatalytic subsets is assured for any fixed probability of catalysis. The main conclusions of this analysis appear independent of the idealizations of the initial model, introduce a novel kind of parallel selection for peptides catalyzing connected sequences of reactions, depend upon a new kind of minimal critical complexity whose properties are definable, and suggest that the emergence of self replicating systems may be a self organizing collective property of critically complex protein systems in prebiotic evolution. Similar principles may apply to the emergence of a primitive connected metabolism. Recombinant DNA procedures, cloning random DNA coding sequences into expression vectors, afford a direct avenue to test the distribution of catalytic capacities in peptide space, may provide a new means to select or screen for peptides with useful properties, and may ultimately lead toward the actual construction of autocatalytic peptide sets.  相似文献   

9.
Ribosomal protein L16 was digested with Staphylococcus aureus protease V8 and the resulting peptides were separated by reversed-phase high-performance liquid chromatography. One of the fragments, identified by sequence analysis as the N-terminal peptide of L16, was shown to exhibit partial peptide-bond-formation and transesterification activities of peptidyltransferase upon reconstitution with L16-depleted 50S core particles. However, several proteins enhanced these activities. L15 increased both reactions when added to the reconstitution mixture, suggesting a limited capacity of the L16 peptide to incorporate into 50S core particles. In contrast, the interaction of L11 with the N-terminal peptide stimulated the transesterification reaction but not the peptide-bond-forming activity of ribosomes, indicating a different topological domain for these reactions. Also, EF-P, a soluble protein which reconstructs the peptide-bond formation and transesterification reactions on 70S ribosomes, stimulated both peptidyltransferase activities exhibited by the L16 N-terminal peptide.  相似文献   

10.
Stimulation of peptide elongation by thyroxine.   总被引:2,自引:2,他引:0       下载免费PDF全文
This study suggests that thyroxine stimulates peptide elongation in a cell-free rat liver polyribosome system. The thyroxine effect persists in the presence of sufficient aurintricarboxylic acid to prevent polyuridylic acid-stimulated peptide initiation. In addition, thyroxine stimulates elongation of pre-existing polyphenylalanine chains providing conclusive evidence that the effect does not depend on peptide initiation. Thyroxine does not stimulate release of nascent peptides from ribosomes into the supernatant phase of the reaction mixture. Therefore in this protein-synthesis system the thyroxine effect is expected to occur at one or more of the reactions of peptide chain elongation, which include aminoacyl-tRNA binding, peptide bond synthesis and translocation.  相似文献   

11.
Lewis CA  Wolfenden R 《Biochemistry》2011,50(33):7259-7264
During the initial event in protein self-splicing, a peptide bond to the nitrogen atom of an internal cysteine or serine residue is usually cleaved by the side chain -SH or -OH group to yield a thioester or oxyester intermediate that undergoes further reactions. Self-splicing reactions also accompany the maturation of hedgehog signaling proteins, plant-type asparaginases, and pyruvoyl enzymes. It would be of interest to know whether peptide bonds that involve the nitrogen atoms of cysteine or serine are more susceptible to cleavage than peptide bonds to amino acids that lack reactive side chains. Extrapolations of the results of model reactions conducted at elevated temperatures indicate that the -SH group of N-acetylcysteine enhances the rate of its hydrolysis by a factor of 70, while the OH group of N-acetylserine enhances the rate of its hydrolysis 12-fold, compared with the rate of hydrolysis of N-acetylalanine in neutral solution at 25 °C. Several lines of evidence suggest that the rate-enhancing effects of these -SH and -OH side chains arise from their ability to act as intramolecular general acid-base catalysts for hydrolysis, rather than as nucleophilic catalysts. The protein environment within self-splicing proteins appears to redirect the actions of these side chains to nucleophilic attack, generating rate enhancements that approach the rate enhancements generated by conventional enzymes.  相似文献   

12.
A theoretical analogue of microsystems formation in prebiological molecular evolution, known, for instance, as microspheres of Fox and marigranules of Yanagawa and Egami, is presented for a model solution system of polyamino acids in which the polymerization due to peptide bond synthesis is initially not in a complete balance with the hydrolysis. The homogeneous solution of polyamino acids, which is in a nonequilibrium state in the sense that a complete balance among all the participating reactions has not yet been established, is unstable against forming microscopic compartments of locally condensed peptide bond linkages. It also follows that both the accumulation of polyamino acids and the number of peptide bond linkages inside the localized microsystems increase with time so long as the solution remains in a nonequilibrium state lacking the balance between the polymerization and the hydrolysis. The phase separation of microsystems from the homogeneous solution of polyamino acids is just a representation of the unidirectional dynamic process that any reaction system, which initially lacks a complete balance among all the participating reactions, evolves toward a goal, if any, at which an equilibrium balancing of reactions be finally established.  相似文献   

13.
James P. Tam  Qitao Yu 《Biopolymers》1998,46(5):319-327
In biological systems, both proteolysis and aminolysis of amide bonds produce activated intermediates through acyl transfer reactions either inter- or intramolecularly. Protein splicing is an illustrative example that proceeds through a series of catalyzed acyl transfer reactions and culminates at an O- or S-acyl intermediate. This intermediate leads to an uncatalyzed acyl migration to form an amide bond in the spliced product. A ligation method mimicking the uncatalyzed final steps in protein splicing has been developed utilizing the acyl transfer amide-bond feature for the blockwise coupling of unprotected, free peptide segments at methionine (Met). The latent thiol moiety of Met can be exploited using homocysteine at the α-amino terminal position of a free peptide for transthioesterification with another free peptide containing an α-thioester to give an S-acyl intermediate. A subsequent, proximity-driven S- to N-acyl migration of this acyl intermediate spontaneously rearranges to form a homocysteinyl amide bond. S-methylation with excess p-nitrobenezensulfonate yields Met at the ligation site. The methionine ligation is selective and orthogonal, and is usually completed within 4 h when performed at slightly basic pH and under strongly reductive conditions. No side reactions due to acylation were observed with any other α-amines of both peptide segments as seen in the synthesis of parathyroid hormone peptides. Furthermore, cyclic peptide can also be obtained through the same strategy by placing both homocysteine at the amino terminus and the thioester at the carboxyl terminus in an unprotected peptide precursor. These biomimetic ligation strategies hold promise for engineering novel peptides and proteins. © 1998 John Wiley & Sons, Inc. Biopoly 46: 319–327, 1998  相似文献   

14.
Two ways for semi-enzymatic preparation of the peptide aldehydes are proposed: (1) enzymatic acylation of amino alcohols with acyl peptide esters and subsequent chemical oxidation of the resulting peptide alcohols with DMSO/acetic anhydride mixture or (2) enzymatic acylation of the preliminarily obtained by a chemical route amino aldehyde semicarbazones. Subtilisin 72, serine proteinase with a broad specificity, distributed over macroporous silica, was used as a catalyst in both cases. Due to the practical absence of water in the reaction mixtures the yields of the products in both enzymatic reactions were nearly quantitative. The second way seems to be more attractive because all chemical stages were carried out with amino acid derivatives, far less valuable compounds than peptide ones. A series of peptide aldehydes of general formula Z-Ala-Ala-Xaa-al (where Xaa-al=leucinal, phenylalaninal, alaninal, valinal) was obtained. The inhibition parameters for these compounds, in the hydrolysis reactions of corresponding chromogenic substrates for subtilisin and -chymotrypsin, were determined.  相似文献   

15.
Analogues of the synthetic substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly in which the serine is replaced by other amino acids inhibited the activity of the catalytic subunit of cyclic AMP-dependent protein kinase from beef skeletal muscle (Peak I). All of the analogues were competitive with respect to peptide substrate but apparent Ki values varied depending on the particular amino acid that was substituted for serine. Inhibition was also competitive with respect to mixed histone as determined in experiments utilizing one of the analogues. Acetylation of the terminal amino group of Leu-Arg-Arg-Ala-Ser-Leu-Gly lowered the Km for this substrate from 16 micrometer to 3 micrometer, but a similar modification of the inhibitory analogue Leu-Arg-Arg-Ala-Ala-Leu-Gly resulted in no major change in the Ki value. An amount of inhibitory peptide sufficient to inhibit the cyclic AMP-dependent protein kinase by 90% caused less than 10% inhibition of several cyclic AMP-independent protein kinases indicating a high degree of specificity of inhibition by the peptide analogues. The experiments show that synthetic peptide analogues could be useful in identifying phosphorylation reactions catalyzed by cyclic AMP-dependent protein kinase as distinguished from other protein kinase reactions.  相似文献   

16.

To achieve a novel specific peptide–nucleic acid binding model, we designed an in vitro selection procedure to decrease the energetic contribution of the electrostatic interaction in the total binding energy and to increase the contribution of hydrogen bonding and π–π stacking. After the selection of hairpin-loop RNAs that specifically bound to a model peptide of lambda N protein (N peptide), a new thermostable pentaloop RNA motif (N binding thermostable RNA hairpin: NTS RNA) was revealed. The obtained NTS RNA was able to bind to the N peptide with superior specificity to the boxB RNA, which is the naturally occurring partner of the lambda N protein.  相似文献   

17.
The elastase inhibitory capacity of alpha 1-proteinase inhibitor (alpha 1-PI) was measured, using a direct and reproducible method, with phagocytic cells maintained in the tissue culture plate through the assay. The oxidative inactivation of alpha 1-PI is known to be mediated by the action of myeloperoxidase (MPO). The fact that hyposialylated IgG (hs IgG) induce the release of MPO prompted us to investigate the effects of such hs IgG on the inhibitory capacity of alpha 1-PI. The results show that 1-PI inactivation was observed only when phagocytic cells were activated by aggregated hs IgG, and not by unaggregated hs IgG. These observations indicate that hyposialylation should be completed by aggregation to perpetuate the oxidative reactions characteristic of inflammatory diseases.  相似文献   

18.
Model studies have shown that peptides derived from the N-terminal region of bovine lactoferrin (Lf-B) exhibit antitumor activity against certain cell lines. This activity is due primarily to the peptides' apoptogenic effect. Several reports indicate that cationic residues clustered in two regions of the peptide sequence can be shuffled into one region and thereby increase cytotoxic activity, although the mechanism of this enhanced cytotoxic effect has not been clarified. In this paper, we considered several parameters that determine the mode of cell death after exposure to a native Lf-B derived peptide (Pep1, residues 17-34), and a modified peptide (mPep1) wherein the cationic residues of Pep1 are clustered in a single region of its helical structure. We found that the cytotoxic activity of mPep1 was about 9.6 fold-higher than that of Pep1 against HL-60 cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. In investigating the expression of phosphatidylserine, we observed that the native peptide (Pep1) caused both apoptotic cell death and necrotic cell death, depending on the concentration of the peptide. In contrast, the action of mPep1 was exclusively characteristic of necrotic cell death. This observation was further confirmed by agarose gel electrophoresis, in which clear ladder-like DNA bands were observed from cells exposed to Pep1, whereas DNA from cells treated with mPep1 produced a smeared pattern. We extended the study by investigating the release of mitochondrial cytochrome c into the cytosol, and the activation of caspase-3; both peptides caused the release of cytochrome c into the cytosol, and the activation of caspase-3.These results suggest that Pep1 may kill cancer cells by activating an apoptosis-inducing pathway, whereas mPep1 causes necrotic cell death by destroying cellular membrane structure notwithstanding sharing some cellular events with apoptotic cell death. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A study was made of the influence of nucleotides (AMP, GMP, UMP, and CMP) on x-ray chemiluminescence of glycyltryptophan and serum albumin solutions in humans. The coefficient of modification of radiation transformations of peptide (10(-4) M) and protein (1.47.10(-4) M) was shown to be a function of nucleotide concentration representing smooth curves with a plateau at the nucleotide concentration of above 2.10(-3) M. The extreme values of the modification coefficient vary from 0.35 to 2.18 and from 1 to 2 for peptide and protein respectively. The experimental data follow the kinetic mechanism suggesting that the protective effect is implemented by the nucleotide reactions with hydroxyl radicals whereas sensitization is implemented by the reactions of free radical nucleotides with peptide and protein molecules.  相似文献   

20.
Nonribosomal peptide synthetase (NRPS) is a programmable modular machinery that produces a number of biologically active small-molecule peptides. Saframycin A is a potent antitumor antibiotic with a unique pentacyclic tetrahydroisoquinoline scaffold. We found that the nonribosomal peptide synthetase SfmC catalyzes a seven-step transformation of readily synthesized dipeptidyl substrates with long acyl chains into a complex saframycin scaffold. Based on a series of enzymatic reactions, we proposed a detailed mechanism involving the reduction of various peptidyl thioesters by a single R domain followed by iterative C domain-mediated Pictet-Spengler reactions. This shows that NRPSs possess a remarkable capability to acquire novel function for diversifying structures of peptide natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号