首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

2.
It has been shown by polarization microfluorimetry that phosphorylation of myosin light chain 2, in stretched single glycerinated fibers of rabbit skeletal muscle, results in changes in polarized fluorescence anisotropy of both the tryptophan residues of myosin molecules and the fluorescent label, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, associated with the fast-reacting thiol group in myosin heads. These changes are also dependent on the presence or absence of Mg2+ in the medium: they are most pronounced in the presence of 5 mM MgCl2. It is assumed that both Mg2+ binding to myosin and phosphorylation of light chain 2 associated with myosin heads induce structural changes in myosin filaments of muscle fibres which are expressed as changes in the orientation of myosin heads and in the conformation of myosin rods.  相似文献   

3.
Interaction of isolated bacterial flagellum filaments (BFF) and intact flagella from E. coli MS 1350 and B. brevis G.-B.p+ with rabbit skeletal myosin was studied. BFF were shown to coprecipitate with myosin (but not with isolated myosin rod) at low ionic strength, that is, under conditions of myosin aggregation. The data of electron microscopy indicate that filaments of intact bacterial flagella interact with isolated myosin heads (myosin subfragment 1, S1), and this interaction is fully prevented by addition of Mg2+ -ATP. Addition of BFF inhibited both K+ -EDTA- and Ca2+ -ATPase activity of skeletal muscle myosin, but had no effect on its Mg2+ -ATPase activity. Monomeric flagellin did not coprecipitate with myosin and had no effect on its ATPase activities. BFF were shown to compete with F-actin in myosin binding. It is concluded that BFF interact with myosin heads and affect their ATPase activity. Thus, BFF composed of a single protein flagellin are in many respects similar to actin filaments. Common origin of actin and flagellin may be a reason for this similarity.  相似文献   

4.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

5.
The contribution of thick and thin filaments to skeletal muscle fiber compliance has been shown to be significant. If similar to the compliance of cycling cross-bridges, myofilament compliance could explain the difference in time course of stiffness and force during the rise of tension in a tetanus as well as the difference in Ca(2+) sensitivity of force and stiffness and more rapid phase 2 tension recovery (r) at low Ca(2+) activation. To characterize the contribution of myofilament compliance to sarcomere compliance and isometric force kinetics, the Ca(2+)-activation dependence of sarcomere compliance in single glycerinated rabbit psoas fibers, in the presence of ATP (5.0 mM), was measured using rapid length steps. At steady sarcomere length, the dependence of sarcomere compliance on the level of Ca(2+)-activated force was similar in form to that observed for fibers in rigor where force was varied by changing length. Additionally, the ratio of stiffness/force was elevated at lower force (low [Ca(2+)]) and r was faster, compared with maximum activation. A simple series mechanical model of myofilament and cross-bridge compliance in which only strong cross-bridge binding was activation dependent was used to describe the data. The model fit the data and predicted that the observed activation dependence of r can be explained if myofilament compliance contributes 60-70% of the total fiber compliance, with no requirement that actomyosin kinetics be [Ca(2+)] dependent or that cooperative interactions contribute to strong cross-bridge binding.  相似文献   

6.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

7.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

8.
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems.  相似文献   

9.
The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. 'Red' and 'white' muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of Ca++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and 'Z' bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail 'red' muscle fibres are possible 'slow,' and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, 'red' muscle fibres of the anuran tai- musculature are not equivalent to 'Type I' fibres of higher chordates.  相似文献   

10.
The interaction between actin and myosin in the filament array of glycerinated muscle fibers has been monitored using paramagnetic probes and mechanical measurements. Both fiber stiffness and the spectra of probes bound to a reactive sulfydral on the myosin head were measured as the actomyosin bond was weakened by addition of magnesium pyrophosphate (MgPPi) and glycerol. In the absence of MgPPi, all myosin heads are attached to actin with oriented probes. When fibers were incubated in buffers containing MgPPi, a fraction of the probes became disordered, and this effect was greater in the presence of glycerol. To determine whether the heads with disordered probes were detached from actin, spin-labeled myosin subfragment-1 (MSL-S1) was diffused into unlabeled fibers, and the fractions bound to actin and free in the medium were correlated with the oriented and disordered spectral components. These experiments showed that the label was oriented when MSL-S1 was attached to actin in a ternary complex with the ligand and that all heads with disordered probes were detached from actin. Thus the fraction of oriented labels could be used to determine the fraction of heads attached to actin in a fiber in the presence of ligand. The fraction of myosin heads attached to actin decreased with increasing [MgPPi], and in the absence of glycerol approximately 50% of the myosin heads were dissociated at 3.3 mM ligand with little change in fiber stiffness. In the presence of 37% glycerol plus ligand, up to 80% of the heads could be detached with a 50% decrease in fiber stiffness. The data indicate that there are two populations of myosin heads in the fiber. All the data could be fit with a model in which one population of myosin heads (comprising approximately 50% of the total) sees an apparent actin concentration of 0.1 mM and can be released from actin with little change in fiber stiffness. A second population of myosin heads (approximately 50%) sees a higher actin concentration (5 mM) and is only released in the presence of both glycerol and ligand.  相似文献   

11.
The steady-state kinetics of the K+, Ca2+, and Mg2+-activated adenosine triphosphatase (ATPase) activities of rabbit skeletal myosin were investigated in the substrate concentration range from 0.05 microM to 5 mM and found not to follow Michaelis-Menten kinetics but rather to display biphasic behavior. The Ca2+-ATPase activity of myosin chymotryptic subfragment-1 (S-1), which has only one active site, also exhibits biphasic kinetics, thus excluding the possibility that the biphasic behavior is caused by negative cooperativity between the two active sites of myosin. Myosin K+ and Mg2+-ATPase are both activated by 5'-adenyl methylenediphosphonate (AdoPP[CH2]P) in a competitive manner at high substrate concentrations; i.e. the maximal velocity observed at high substrate concentrations is independent of the AdoPP[CH2]P concentration. This result provides evidence for substrate activation via binding to a regulatory site. Pyrophosphate inhibits myosin ATPase in a competitive manner at low substrate concentrations and in an uncompetitive manner at high substrate concentrations, with the uncompetitive Ki being smaller than the competitive Ki; i.e. pyrophosphate binds more tightly to the effector site than to the active site.  相似文献   

12.
The dependence of polarized fluorescence of rhodaminylphalloin specifically bound to F-actin and the tension developed by a fiber upon phosphorylation of myosin (18.5 kD) light chains as well as on the concentration of free Ca2+ was observed during the contraction of glycerinated rabbit skeletal muscle fibers. Still greater changes in the polarized fluorescence and higher values of tension were recorded for fibers with phosphorylated light chains at low (0.6 microM) Ca2+ concentrations as well as for those with dephosphorylated light chains at high (10 microM) Ca2+ concentrations. It is concluded that phosphorylation of myosin light chains modulates skeletal muscle contraction. The mechanisms of modulation involve conformational changes in F-actin.  相似文献   

13.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

14.
Monoclonal antibodies against gizzard smooth muscle myosin were generated and characterized. One of these antibodies, designated MM-2, recognized the 17-kDa light chain and modulated the ATPase activities and hydrodynamic properties of smooth muscle myosin. Rotary shadowing electron microscopy showed that MM-2 binds 51 (+/- 25) A from the head-rod junction. The depression of Ca2+- and Mg2+-ATPase activities of myosin and Ca2+-ATPase activity of heavy meromyosin at low KCl concentration were abolished by MM-2. Viscosity measurement indicated that MM-2 inhibits the transition of 6 S myosin to 10 S myosin. While the rate of the production of subfragment-1 by papain proteolysis of 6 S myosin was inhibited by MM-2, the rate of proteolysis of the heavy chain of 10 S myosin was enhanced by MM-2 and reached the same rate as that of 6 S myosin plus MM-2. These results suggest that MM-2 inhibits the formation of 10 S myosin by binding to the 17-kDa light chain which is localized at the head-neck region of the myosin molecule. MM-2 increased the Vmax of actin-activated Mg2+-ATPase activities of both dephosphorylated myosin and dephosphorylated heavy meromyosin about 10- and 20-fold, respectively. MM-2 also activated the actin-activated Mg2+-ATPase activity of phosphorylated myosin at a low MgCl2 concentration and thus abolished the Mg2+-dependence of acto phosphorylated myosin ATPase activity. These results suggest that MM-2 inhibits the formation of 10 S myosin, and this results in the activation of actin-activated Mg2+-ATPase activity even in the absence of phosphorylation.  相似文献   

15.
The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC.  相似文献   

17.
A method is described for the preparation of partially and fully phosphorylated chicken gizzard myosin. When fully phosphorylated it possessed an actin-activated Mg2+-ATPase of similar specific activity to that of mammalian skeletal muscle myosin. The Mg2+-ATPase activity of these preparations was related in a non-linear fashion to increasing phosphorylation of the P light chain. When P light chain phosphorylation occurred during enzymic assay the Mg2+-ATPase activity remained constant. Fully phosphorylated preparations of gizzard myosin possessed an actin-activated Mg2+-ATPase that was not Ca2+-sensitive, whereas the Mg2+-ATPase of partially phosphorylated myosin preparations was Ca2+-sensitive.  相似文献   

18.
The actin-activated Mg2+-ATPase of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of 3 serine residues at the tip of the tail of each of its two heavy chains; only dephosphorylated myosin II is active, whereas the phosphorylated and dephosphorylated forms have identical Ca2+-ATPase activities and Mg2+-ATPase activities in the absence of F-actin. We have now chemically modified phosphorylated and dephosphorylated myosin II with N-ethylmaleimide (NEM). The modification occurred principally at a single site within the NH2-terminal 73,000 Da of the globular head of the heavy chain. NEM-myosin II bound to F-actin and formed filaments normally, but the Ca2+- and Mg2+-ATPase activities of phosphorylated and dephosphorylated myosin II and the actin-activated Mg2+-ATPase activity of NEM-dephosphorylated myosin II were inhibited. Only filamentous myosin II has actin-activated Mg2+-ATPase activity. Native phosphorylated myosin II acquired actin-activated Mg2+-ATPase activity when it was co-polymerized with NEM-inactivated dephosphorylated myosin II, and the increase in its activity was cooperatively dependent on the fraction of NEM-dephosphorylated myosin II in the filaments. From this result, we conclude that the specific activity of each molecule within a filament is independent of its own state of phosphorylation, but is highly cooperatively dependent upon the state of phosphorylation of the filament as a whole. This enables the actin-activated Mg2+-ATPase activity of myosin II filaments to respond rapidly and extensively to small changes in the level of their phosphorylation.  相似文献   

19.
The activities of Mg2+-ATPase (Mg2+-activated ATPase), (Ca2+ + Mg2+)-activated ATPase and (Na+ + K+)-activated ATPase have been determined in microsomes (microsomal fractions) obtained from rat myometrium under different hormonal conditions. Animals were either ovariectomized and treated for a prolonged period of time with 17 beta-oestradiol or progesterone, or myometria were obtained at day 21 of pregnancy. In each case the endometrium was carefully removed. The Mg2+-ATPase consists of two components: an inactivating labile component and a second constant component. The rate of ATP hydrolysis by the labile component of the Mg2+-ATPase declines exponentially as a function of time after adding the membranes to the assay medium; this inactivation is caused by the presence of ATP in the medium. This ATPase activity inhibited by ATP is catalysed by a labile enzyme and hence it gradually diminishes within a few hours, even when the microsomes are kept on ice. This labile component has the highest activity in microsomes from pregnant rats, a lower activity in progesterone-treated rats, and the lowest in 17 beta-oestradiol-treated rats. This component of the Mg2+-ATPase is not affected by 90 nM-oxytocin. The constant component of the Mg2+-ATPase must be ascribed to a different enzyme, which, in contrast with the labile component, is very stable and not affected by the hormonal status of the animal. This constant component of the Mg2+-ATPase is inhibited both by Ca2+-calmodulin, and by oxytocin in microsomes from pregnant and from progesterone-treated animals, whereas such inhibition does not occur in microsomes from 17 beta-oestradiol-treated animals. The activity of the (Na+ + K+)-activated ATPase is not dependent on the hormonal status of the animal. Myometrial microsomes present an ATP-dependent Ca2+ transport, irrespective of the hormonal condition, but only in microsomes obtained from rats treated with 17 beta-oestradiol, can a (Ca2+ + Mg2+)-activated ATPase activity be demonstrated. This activity can be stimulated by calmodulin.  相似文献   

20.
Single fibers from glycerinated rabbit psoas muscle were treated with a solution containing CDTA, a strong chelator of metal ions. The CDTA-treated fibers lost all of the troponin C and showed no Ca2+-activated tension development. The addition of troponin C restored the Ca2+-activated tension of CDTA-treated fibers. The tension-pCa relationship in the case of the CDTA-treated fibers reconstituted with troponin C was almost the same as that in the case of the same fibers before the CDTA treatment. These results are consistent with those of the previous study on the Ca2+-activated ATPase of CDTA-treated rabbit skeletal myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号