首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

5.
6.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

7.
Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated ‘mito-mice tRNALeu(UUR)2748’, that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.  相似文献   

8.
9.
The mitochondrial tRNA(Leu)(UUR) (R = A or G) gene possesses several hot spots for pathogenic mutations. A point mutation at nucleotide position 3243 or 3271 is associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes and maternally inherited diabetes with deafness. Detailed studies on two tRNAs(Leu)(UUR) with the 3243 or 3271 mutation revealed some common characteristics in cybrid cells: (i) a decreased life span, resulting in a 70% decrease in the amounts of the tRNAs in the steady state, (ii) a slight decrease in the ratios of aminoacyl-tRNAs(Leu)(UUR) versus uncharged tRNAs(Leu)(UUR), and (iii) accurate aminoacylation with leucine without any misacylation. As a marked result, both of the mutant tRNA molecules were deficient in a modification of uridine that occurs in the normal tRNA(Leu)(UUR) at the first position of the anticodon. The lack of this modification may lead to the mistranslation of leucine into non-cognate phenylalanine codons by mutant tRNAs(Leu)(UUR), according to the mitochondrial wobble rule, and/or a decrease in the rate of mitochondrial protein synthesis. This finding could explain why two different mutations (3243 and 3271) manifest indistinguishable clinical features.  相似文献   

10.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

11.
The gene encoding mt-tRNALeu(UUR), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNALeu(UUR) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G in transmitochondrial cybrids. Increased steady-state levels of RNA19 was confirmed, although not to the levels previously reported in muscle. This data was consistent with an increase in RNA19 stability. The mutation resulted in decreased mt-tRNALeu(UUR) levels, but its stability was unchanged, consistent with a defect in RNA19 processing responsible for low tRNA levels. A partial defect in aminoacylation was also identified, potentially caused by an alteration in tRNA structure. These deficiencies lead to a severe defect in respiration in the transmitochondrial cybrids, consistent with the profound mitochondrial disorder originally associated with this mutation.  相似文献   

12.
Cells harboring patient-derived mitochondria with an A-to-G transition at nucleotide position 3243 of their mitochondrial DNA display severe loss of respiration when compared with cells containing the wild-type adenine but otherwise identical mitochondrial DNA sequence. The amount and degree of leucylation of tRNA(Leu(UUR)) were both found to be highly reduced in mutant cells. Despite the low level of leucyl-tRNA(Leu(UUR)), the rate of mitochondrial translation was not seriously affected by this mutation. Therefore, decrease of mitochondrial protein synthesis as such does not appear to be a necessary prerequisite for loss of respiration. Rather, the mitochondrially encoded proteins seem subject to elevated degradation, leading to a severe reduction in their steady state levels. Our results favor a scheme in which the 3243 mutation causes loss of respiration through accelerated protein degradation, leading to a disequilibrium between the levels of mitochondrial and nuclear encoded respiratory chain subunits and thereby a reduction of functional respiratory chain complexes. The possible mechanisms underlying the pathogenesis of mitochondrial diabetes is discussed.  相似文献   

13.
We have recently identified a point mutation in the mitochondrially encoded tRNA(Leu(UUR)) gene which associates with a combination of type II diabetes mellitus and sensorineural hearing loss in a large pedigree. To extend this finding to other syndromes which exhibit a combination of diabetes mellitus and hearing loss we have sequenced all mitochondrial tRNA genes from two patients with the Wolfram syndrome, a rare congenital disease characterized by diabetes mellitus, deafness, diabetes insipidus and optic atrophy. In each patient, a single different mutation was identified. One is an A to G transition mutation at np 12,308 in tRNA(Leu(CUN)) gene in a region which is highly conserved between species during evolution. This mutation has been described by Lauber et al. (1) as associating with chronic progressive external ophthalmoplegia (CPEO). The other is a C to T transition mutation at np 15,904 in tRNA(Thr) gene. Both mutations are also present in the general population (frequency tRNA(Leu(CUN)) mutation 0.16, tRNA(Thr) mutation 0.015). These findings suggest that evolutionarily conserved regions in mitochondrial tRNA genes can exhibit a significant polymorphism in humans, and that the mutation at np 12,308 in the tRNA(Leu(CUN)) gene is unlikely to be associated with CPEO and Wolfram syndrome.  相似文献   

14.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

15.
Diseases associated with point mutations in the mitochondrial DNA (mtDNA) are maternally inherited. We evaluated whether pre-implantation genetic diagnosis, based on polar body mutation load detection could be used to distinguish healthy from affected oocytes. Restriction Fragment Length Polymorphism (RFLP) analysis was used and validated, to determine A3243G tRNA(Leu(UUR)) mutation load in metaphase II oocytes and their respective first polar bodies. The results of this study show for the first time that the mutation load measured in the polar bodies correlates well with the mutation load in the respective oocytes. Therefore, human polar body analysis can be used as diagnostic tool to prevent transmission of mitochondrial disorders.  相似文献   

16.
赵晶  季敬璋  汪大望  张洁  吴惠洁  吕建新 《遗传》2006,28(10):1206-1212
为了解浙江省温州地区2型糖尿病病人中线粒体DNA tRNALeu (UUR)基因A3243G及NADH 脱氢酶亚单位1 (ND1)基因G3316A位点突变的发生频率, 并探讨突变与2型糖尿病主要临床指标出现的相关性。对随机收集的无血缘关系的244例温州地区2型糖尿病患者进行研究, 同时选择156例无 DM 家族史的糖耐量正常者作为对照组, 用聚合酶链反应及限制性片段长度多态性分析技术进行点突变筛选, 筛选到的异质性突变样本经T-A克隆后再作测序和变性高效液相色谱(DHPLC)确证。结果在244例的2型糖尿病患者中检出A3243G突变1例(0.410%), 156例对照者中未检出该突变, 突变发生率在两组间差异无统计学意义(P>0.05); 2型糖尿病患者中检出G3316A突变4例(1.639%), 156例对照者中检出突变2例(1. 282%), 突变发生率在两组间差异无统计学意义(P>0.05)。结果表明线粒 体tRNALeu (UUR) 基因A3243G突变在浙江温州2型糖尿病人群中发生频率低, 不是温州人群中2型糖尿病的常见病因。线粒体ND1基因G3316A突变在糖尿病人群中的发生频率也较低, 且在正常人群中也有出现, 可能仅为人群中线粒体DNA的基因多态性。  相似文献   

17.
18.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

19.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

20.
In 3 of 40 MELAS patients, a new common mutation, a T-to-C transition at nucleotide position 3271 in the mitochondrial tRNA(Leu(UUR] gene was recognized and was very near to the most common mutation site at 3243. With a simple detection method using polymerase chain reaction with a mismatch primer, none of 46 patients with other mitochondrial diseases and 50 controls had this mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号