首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proteomics-based search for molecules interacting with caspase-14 identified prosaposin and epidermal mesotrypsin as candidates. Prosaposin is a precursor of four sphingolipid activator proteins (saposins A–D) that are essential for lysosomal hydrolysis of sphingolipids. Thus, we hypothesized that caspase-14 and mesotrypsin participate in processing of prosaposin. Because we identified a saposin A sequence as an interactor with these proteases, we prepared a specific antibody to saposin A and focused on saposin A-related physiological reactions. We found that mesotrypsin generated saposins A–D from prosaposin, and mature caspase-14 contributed to this process by activating mesotrypsinogen to mesotrypsin. Knockdown of these proteases markedly down-regulated saposin A synthesis in skin equivalent models. Saposin A was localized in granular cells, whereas prosaposin was present in the upper layer of human epidermis. The proximity ligation assay confirmed interaction between prosaposin, caspase-14, and mesotrypsin in the granular layer. Oil Red staining showed that the lipid envelope was significantly reduced in the cornified layer of skin from saposin A-deficient mice. Ultrastructural studies revealed severely disorganized cornified layer structure in both prosaposin- and saposin A-deficient mice. Overall, our results indicate that epidermal mesotrypsin and caspase-14 work cooperatively in prosaposin processing. We propose that they thereby contribute to permeability barrier formation in vivo.  相似文献   

2.
Saposins (A, B, C, and D) are small sphingolipid activator proteins that are derived by proteolytic processing of a common precursor, prosaposin. In the lysosomal sphingolipid degradation pathway, acid beta-glucosidase (GCase) requires saposin C for optimal in vitro and in vivo hydrolysis of glucocerebroside. The deficiency of prosaposin/saposins (PS-/-) in humans and mice leads to a decrease of GCase activity in selected tissues. Concordant decreases (>50%) of GCase protein and in vitro activity were detected in extracts of cultured fibroblasts and hepatocytes from PS-/- mice and human prosaposin-deficient fibroblasts. GCase RNA in the PS-/- cells was at wild-type levels. Compared with that in wild-type cells (t(1/2) >24 h), the GCase protein in the PS-/- cells had a faster disappearance rate (t(1/2) approximately 1 h in mouse and approximately 8 h in human) as determined by metabolic labeling and immunoprecipitation with anti-GCase antibodies. Treatment of PS-/- cells with leupeptin, an inhibitor of cysteine proteases, led to significant increases (approximately 2-fold) in GCase protein and in vitro activity. Loading saposin C to human PS-/- fibroblasts resulted in an enhancement of GCase protein and in vitro activity. Saposin D loading had no effect. These data indicate that saposin C is required for GCase resistance to proteolytic degradation in the cell. Thus, diminished in vivo GCase activity would be greater than expected only from the lack of GCase activation by saposin C. These results indicate a new property for saposin C, an anti-proteolytic protective function toward GCase.  相似文献   

3.
Prosaposin is a multifunctional protein with diverse functions. Intracellularly, prosaposin is a precursor of four sphingolipid activator proteins, saposins A to D, which are required for hydrolysis of sphingolipids by several lysosomal exohydrolases. Secreted prosaposin has been implicated as a neurotrophic, myelinotrophic, and myotrophic factor as well as a spermatogenic factor. It has also been implicated in fertilization. The human and the mouse prosaposin gene has a 9-bp exon (exon 8) that is alternatively spliced, resulting in an isoform with three extra amino acids, Gln-Asp-Gln, within the saposin B domain. Alternative splicing in the prosaposin gene is conserved from fish to humans, tissue specific, and regulated in the brain during development and nerve regeneration-degeneration processes. To elucidate the physiological role of alternative splicing, we have generated a mouse lacking exon 8 by homologous recombination. The exon 8 prosaposin mutant mice are healthy and fertile with no obvious phenotype. No changes were detected in prosaposin secretion or in accumulation and metabolism of gangliosides, sulfatides, neutral glycosphingolipids, neutral phospholipids, other neutral lipids, and ceramide. These data strongly indicate that the prosaposin variant containing the exon 8-encoded three amino acids is dispensable for normal mouse development and fertility as well as for prosaposin secretion and its lysosomal function, at least in the presence of the prosaposin variant missing the exon 8-encoded three amino acids.  相似文献   

4.
Gaucher disease is a common lysosomal storage disease caused by a defect of acid beta-glucosidase (GCase). The optimal in vitro hydrolase activity of GCase requires saposin C, an activator protein that derives from a precursor, prosaposin. To develop additional models of Gaucher disease and to test in vivo effects of saposin deficiencies, mice expressing low levels (4--45% of wild type) of prosaposin and saposins (PS-NA) were backcrossed into mice with specific point mutations (V394L/V394L or D409H/D409H) of GCase. The resultant mice were designated 4L/PS-NA and 9H/PS-NA, respectively. In contrast to PS-NA mice, the 4L/PS-NA and 9H/PS-NA mice displayed large numbers of engorged macrophages and nearly exclusive glucosylceramide (GC) accumulation in the liver, lung, spleen, thymus, and brain. Electron microscopy of the storage cells showed the characteristic tubular storage material of Gaucher cells. Compared with V394L/V394L mice, 4L/PS-NA mice that expressed 4--6% of wild-type prosaposin levels had approximately 25--75% decreases in GCase activity and protein in liver, spleen, and fibroblasts. These results imply that reduced saposin levels increased the instability of V394L or D409H GCases and that these additional decreases led to large accumulations of GC in all tissues. These models mimic a more severe Gaucher disease phenotype and could be useful for therapeutic intervention studies.  相似文献   

5.
Combined saposin A and saposin B deficiency (AB−/−) was created in mice by knock-in of point mutations into the saposin A and B domains of the Psap (encoding prosaposin) locus. PSAP is the precursor of saposin A, saposin B and two other members, saposin C and saposin D. Those four saposins have multiple functions including their roles as glycosphingolipid activator proteins in a lysosomal glycosphingolipid degradation pathway. Saposin A participates in the removal of galactose from galactosylceramide and galactosylsphingosine by enhancing β-galactosylceramidase activity. Saposin B has lipid binding properties and is involved in glycosphingolipid metabolism by presenting the substrates to specific enzymes for degradation, i.e., sulfatide to ARSA/arylsulfatase A, lactosylceramide to GALC/GM-1-β-galactosylceramidase, and globotriaosylceramide to GLA/α-galactosidase. Galactosylceramide and sulfatide are myelin glycosphingolipids involved in carbohydrate interaction between synapses. The AB−/− mice develop accumulation of multiple glycosphingolipids in various organs. Sulfatide and galactosylsphingosine, a deacylated form of galactosylceramide, are the major substrates accumulated in the CNS of AB−/− mice. The latter is a toxic metabolite to oligodendrocytes and results in demyelination and cell death.  相似文献   

6.
Abstract: Prosaposin, a 517-amino-acid glycoprotein, not only acts as the precursor of saposin A, B, C, and D but also possesses neurotrophic activity to rescue hippocampal CA1 neurons from ischemic damage in vivo and to promote neurite extension of neuroblastoma cells in vitro. Recently, the trophic activity of prosaposin on human neuroblastoma cells has been shown to reside in the NH2-terminal hydrophilic sequence (LIDNNRTEEILY) of the human saposin C. Here we show that prosaposin, saposin C, and a peptide comprising the 18-amino-acid sequence (18-mer peptide; LSELIINNATEELLIKGL) located in the NH2-terminal hydrophilic sequence of the rat saposin C-domain promoted survival and neurite outgrowth of cultured rat hippocampal neurons in a dose-dependent manner. Moreover, infusion for 7 days of the 18-mer peptide into the lateral ventricle of gerbils, starting either 2 h before or immediately after 3 min of forebrain ischemia, protected ischemia-induced learning disability and hippocampal CA1 neuronal loss. Thus, we ascribe the in vitro and in vivo trophic actions of prosaposin on hippocampal neurons to the linear 18-mer sequence and raise the possibility that this peptide can be used as an agent for the treatment of forebrain ischemic damage.  相似文献   

7.
Prosaposin is the precursor of four activator proteins, termed saposins A, B, C, and D, that are required for much of glycosphingolipid hydrolysis. The intact precursor also has neurite outgrowth activity ex vivo and in vivo that is localized to amino acid residues 22-31 of saposin C. Across species, this saposin C region has a high degree of identity and similarity with amino acids in the analogous region of saposin A. Wild-type and mutant saposins C and A from human and mouse were expressed in E. coli. Pure proteins, synthetic peptide analogues, conformation-specific antibodies, and CD spectroscopy were used to evaluate the basis of the ex vivo neuritogenic effect. Wild-type saposin A had no neuritogenic activity whereas reduced and alkylated saposin A did. Introduction of the conserved saposin A Tyr 30 (Y30) into saposin C at the analogous position 31, a conserved Ala(A)/Gly(G)31, diminished neuritogenic activity by 50-60%. Nondenatured saposin A with an introduced A30 acquired substantial neuritogenic activity. Polyclonal antibodies directed against the NH2-terminus of saposin C cross-reacted well with reduced and alkylated saposins C and A, wild-type saposin C, and saposin A [Y30A], poorly with saposin C [A31Y], and not at all with wild-type saposin A. CD spectra of wild-type and mutant saposins C and A, the corresponding neuritogenic region of saposin C, and the analogous region of saposin A showed that more "saposin C-like" molecules had neuritogenic properties. Those with more "saposin A-like" spectra did not. These studies show that the neuritogenic activity of saposin C requires specific placement of amino acids, and that Y30 of saposin A significantly alters local conformation in this critical region and suppresses neuritogenic activity.  相似文献   

8.
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems. Funding: This study was supported by the Ehime University INCS and in part by grants-in-aid for Scientific Research to S.M. (Exploratory Res. 19659380) from the Japan Society for the Promotion of Science and to AS (Priority Areas 18023029) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

9.
10.
Sphingolipid activator protein (SAP) deficiency, previously described in two sibs and shown to be caused by the absence of the common saposin precursor (prosaposin), was further characterized by biochemical lipid and enzyme studies and by ultrastructural analysis. The 20 week old fetal sib had increased concentrations of neutral glycolipids, including mono-, di-, tri- and tetrahexosylceramide, in liver, kidney and cultured skin fibroblasts compared with the controls. Glucosylceramide and lactosylceramide were particularly elevated. The kidney of the affected fetus showed additional increases in the concentration of sulphatide, galactosylceramide and digalactosylceramide. Free ceramide was stored in the liver and kidney, and GM3 and GM2 gangliosides were elevated in the liver, but not the brain, of the fetus. Phospholipids, however, were normal in the affected fetus. In the liver biopsy of the propositus, who later died at 16 weeks of age, only a few lipids could be studied. Glucosylceramide, dihexosylceramide and ceramide were elevated in agreement with our previous study. Enzyme studies were undertaken using detergent free liposomal substrate preparations and fibroblast extracts. The sibs' -glucocerebrosidase and -galactocerebrosidase activities were clearly reduced, but their sphingomyelinase activities were normal. The normal activity of the latter enzyme and the almost normal tissue concentration of sphingomyelin in prosaposin deficiency suggest that the prosaposin derived SAPs are not required for sphingomyelinase activity in vivo. In keeping with the biochemical findings, skin biopsies from the sibs showed massive lysosomal storage with a vesicular and membranous ultrastructure. The function of SAPs in sphingolipid degradation and the role of SAPs for enzyme activity in vitro are discussed. In addition, the similarity in neutral glycolipid accumulations in Niemann Pick disease type C and in prosaposin deficiency are noted. The phenotype of the prosaposin deficient sibs resembled acute neuronopathic (type 2) Gaucher disease more than Farber disease in several aspects, but their genotype was unique.This paper is dedicated to Prof. Jürgen Pfeiffer on the occasion of his 70th birthday  相似文献   

11.
Summary Cultured skin fibroblasts from controls and patients with lysosomal storage diseases were loaded with GM1 ganglioside that had been labelled with tritium in its ceramide moiety. After a 65-h or 240-h incubation, a large percentage of this ganglioside remained undegraded in GM1 gangliosidoses, whereas in the other storage diseases studied, one of its metabolites accumulated by 2–4 fold relative to controls. Labelled GM2 ganglioside accumulated in 4 variants of GM2 gangliosidosis, whereas labelled GM3 ganglioside accumulated in sialidosis, galactosialidoses and sphingolipid activator protein 1 (SAP-1, saposin B) and prosaposin (saposin A, B, C an D) deficient lipidoses. The reduced degradation of GM3 ganglioside in the SAP-1 and prosaposin deficiencies was attributed to the deficient function of SAP-1. The prosaposin deficient cells also showed a reduced re-utilization of radioactive metabolites from GM1 ganglioside (i.e. sphingosine and fatty acid) for phospholipid biosynthesis compared with fibroblasts from the SAP-1 deficient patient or normal controls. This anomaly was ascribed to the previously shown defect in ceramide degradation in prosaposin deficiency.  相似文献   

12.
Although the Man-6-P-independent lysosomal sorting of prosaposin, a precursor of four saposins (A, B, C, and D) is not understood, a protein/lipid interaction is considered. Immunocytochemical analysis revealed that each single saposin linked to the C-terminus of prosaposin and to secretory albumin, drives the chimeric protein to lysosomes in COS-7 cells. Quantitative image analysis demonstrated that saposins are targeted with different efficiency (P<0.05) and in a less smooth manner than the precursor. Despite a very close homology, the charge distribution at the surface of 3D comparative models between saposins appeared different. Western blotting monitored prosaposin in cells also as a di- or trimeric form, whereas the chimeric saposins as monomeric. This implies that each amphipathic saposin-like motif may be a part of the overall structural requirements for binding of the precursor to the membrane lipids of transport vesicle. The crystal structure of saposin B demonstrating two dimeric units for lipid binding supports current findings.  相似文献   

13.
Saposins: structure, function, distribution, and molecular genetics.   总被引:11,自引:0,他引:11  
Saposins A, B, C, and D are small heat-stable glycoproteins derived from a common precursor protein, prosaposin. These mature saposins, as well as prosaposin, activate several lysosomal hydrolases involved in the metabolism of various sphingolipids. All four saposins are structurally similar to one another including placement of six cysteines, a glycosylation site, and conserved prolines in identical positions. In spite of the structural similarities, the specificity and mode of activation of sphingolipid hydrolases differs among individual saposins. Saposins appear to be lysosomal proteins, exerting their action upon lysosomal hydrolases. Prosaposin is a 70 kDa glycoprotein containing four domains, one for each saposin, placed in tandem. Prosaposin is proteolytically processed to saposins A, B, C and D, apparently within lysosomes. However, prosaposin also exists as an integral membrane protein not destined for lysosomal entry and exists uncleaved in many biological fluids such as seminal plasma, human milk, and cerebrospinal fluid, where it appears to have a different function. The physiological significance of saposins is underlined by their accumulation in tissues of lysosomal storage disease patients and the occurrence of sphingolipidosis due to mutations in the prosaposin gene. This review presents an overview of the occurrence, structure and function of these saposin proteins.  相似文献   

14.
Sphingolipid hydrolase activator proteins and their precursors   总被引:3,自引:0,他引:3  
Activator proteins for sphingolipid hydrolases (saposins) are small acidic, heat-stable glycoproteins that stimulate the hydrolysis of sphingolipids by lysosomal enzymes. The molecular mass of each stimulator is about 10 kDa, but glycosylated forms of higher mass exist too. The distribution and developmental changes in two saposins and their precursor proteins were studied with the aid of monospecific antibodies against saposin-B and saposin-C. They show a wide distribution in rat organs and forms intermediate between saposin and prosaposin (the precursor protein containing four different saposin units) could be seen. The amount of saposin and the degree of processing from prosaposin are quite different in different tissues. The saposins are the dominant forms in spleen, lung, liver, and kidney, while skeletal muscle, heart, and brain contain mainly precursor forms. In human blood, leukocytes contain mainly saposin, while plasma contains mainly precursor forms and platelets show many forms. Their subcellular distribution was studied using rat liver. The saposins of approximately 20 kDa are dominant in the light mitochondrial, mitochondrial, and microsomal fractions, following the distribution of the activity of a lysosomal marker enzyme. The nuclear fraction exhibits bands corresponding to non-glycosylated saposin. The soluble fraction contained much precursor forms. A developmental study of rat brain showed that the concentration of saposin precursors increased with age.  相似文献   

15.
Abstract: Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor in vitro as well as in vivo. Its neurotrophic activity has been localized to a linear 12-amino acid sequence located in the NH2-terminal portion of the saposin C domain. In this study, we show the colocalization of prosaposin and ganglioside GM3 on NS20Y cell plasma membrane by scanning confocal microscopy. Also, TLC and western blot analyses showed that GM3 was specifically associated with prosaposin in immunoprecipitates; this binding was Ca2+-independent and not disassociated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The association of prosaposin-GM3 complexes on the cell surface appeared to be functionally important, as determined by differentiation assays. Neurite sprouting, induced by GM3, was inhibited by antibodies raised against a 22-mer peptide, prosaptide 769, containing the neurotrophic sequence of prosaposin. In addition, pertussis toxin inhibited prosaptide-induced neurite outgrowth, as well as prosaptide-enhanced ganglioside concentrations in NS20Y cells, suggesting that prosaposin acted via a G protein-mediated pathway, affecting both ganglioside content and neuronal differentiation. Our findings revealed a direct and right GM3-prosaposin association on NS20Y plasma membranes. We suggest that ganglioside-protein complexes are structural components of the prosaposin receptor involved in cell differentiation.  相似文献   

16.
The compartmental nature of eukaryotic cells requires sophisticated mechanisms of protein sorting. Prosaposin, the precursor of four sphingolipid activator proteins, is transported from the trans-Golgi network (TGN) to lysosomes as a partially glycosylated (65 kDa) protein with high-mannose/hybrid oligosaccharides. Prosaposin is also found in the extracellular space where it is secreted as a fully glycosylated (70 kDa) protein composed of complex glycans. Although the trafficking of prosaposin to lysosomes is known to be mediated by sortilin, the mechanism of secretion of this protein is still unknown. In this study, we report that prosaposin may covalently aggregate into oligomers. Our results demonstrate that while prosaposin oligomers are secreted into the extracellular space, monomeric prosaposin remains inside the cell bound to sortilin. We also found that deletion of the C-terminus of prosaposin, previously shown to block its lysosomal transport, did not abolish its oligomerization and secretion. On the other hand, elimination of the N-terminus and of each saposin domain inhibited its oligomerization and resulted in its retention as a fully glycosylated protein. In conclusion, we are reporting for the first time that oligomerization of prosaposin is crucial for its entry into the secretory pathway.  相似文献   

17.
Androgen-regulated genes (ARG) are implicated in normal and neoplastic growth of the prostate. Recently, we reported genomic amplification and/or overexpression of a previously known neurotrophic factor, prosaposin, in androgen-independent (AI) or metastatic prostate cancer (PCa) cells and tissues. Prosaposin and/or its known active molecular derivatives (e.g., saposin C) function as a pluripotent growth factor with diverse biological activities that favor malignant phenotypes in PCa cells. In addition, prosaposin or saposin C upregulates androgen receptor (AR) and AR-target genes (i.e., prostate-specific antigen, Probasin) expression and activity in LNCaP cells. Here, we examined prosaposin as an ARG. We report that DHT treatment of LNCaP cells increases prosaposin expression. In addition, we demonstrate androgen-responsiveness of prosaposin promoter and AR occupancy to a hormone-responsive element located in the proximal region of the prosaposin promoter. Our data for the first time identify prosaposin as an ARG. This observation, together with the pleiotropic growth factor activity of prosaposin, might suggest a role for this molecule in AR-dependent progression of prostate cancer at its early or late AI-state.  相似文献   

18.
Although seminolipid has long been suspected to play an essential role in spermatogenesis because of its uniquely abundant and temporally regulated expression in the spermatocytes, direct experimental evidence has been lacking. We have tested the hypothesis by examining the testis of the UDP-galactose:ceramide galactosyltransferase-deficient mouse, which is incapable of synthesizing seminolipid. Spermatogenesis in homozygous affected males is arrested at the late pachytene stage and the spermatogenic cells degenerate through the apoptotic process. This stage closely follows the phase of rapid seminolipid synthesis in the wild-type mouse. These observations not only provide the first experimental evidence that seminolipid is indeed essential for normal spermatogenesis but also support the broader concept that cell surface glycolipids are important in cellular differentiation and cell-to-cell interaction.  相似文献   

19.
Mammalian sulfoglycolipids are comprised of two major members, sulfatide (SO(3)-3Gal-ceramide) and seminolipid (SO(3)-3Gal-alkylacylglycerol). Sulfatide is abundant in the myelin sheath and seminolipid is expressed on the spermatogenic cells. Cerebroside sulfotransferase (CST)-deficient mice generated by gene targeting completely lack sulfatide and seminolipid all over the body. CST-null mice manifest some neurological disorders due to myelin dysfunction, an aberrant enhancement of oligodendrocyte terminal differentiation, and an arrest of spermatogenesis, indicating that sulfation of glycolipids is essential for myelin formation and spermatogenesis. Moreover, CST-deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction, an experimental model of renal interstitial inflammation, indicating that sulfatide is an endogenous ligand of L-selectin. Studies on the molecular mechanisms by which sulfoglycolipids participate in these biological processes are ongoing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号