首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activities of glutaminase, glutamine synthetase (GS), arginase and ornithine amino transferase (orn-T) were studied in three regions of rat brain in heightened neuronal activity by producing convulsions by leptazol. These enzymes were studied in preconvulsive, convulsive and postconvulsive phases. Glutaminase activity was found to increase in all the three regions in the preconvulsive and convulsive phases. GS activity decreased in the preconvulsive phase but rose gradually to the control level when the postconvulsive phase was reached. The activity of arginase decreased in the cerebellum in preconvulsive and convulsive phases. However, in the cerebral cortex there was a decrease in the activity of this enzyme only in the convulsive phase. The results suggest that glutamine acts more likely as a precursor for the neurotransmitter pool of glutamate, while ornithine serves more as a precursor for the neurotransmitter pool of GABA.  相似文献   

2.
Sasaki K  Hatta S  Wada K  Ohshika H  Haga M 《Life sciences》2000,67(6):709-715
We previously reported that bilobalide, a constituent of Ginkgo biloba L. leaves, protected mice against convulsions induced by 4-O-methylpyridoxine (MPN). To elucidate the mechanism of the anticonvulsant activity of bilobalide, this study examined the effect of bilobalide on MPN-induced changes in the levels of gamma-aminobutyric acid (GABA) and glutamate, and in the activity of glutamic acid decarboxylase (GAD) in the hippocampus, cerebral cortex and striatum of the mouse. GABA levels and GAD activity in the hippocampus and cerebral cortex were significantly enhanced by bilobalide treatment (30 mg/kg, p.o., for 4 days) alone. MPN significantly decreased GABA levels and GAD activity in the three brain regions tested compared with those in the control. Pretreatment with bilobalide effectively suppressed the MPN-induced reduction in GABA levels and GAD activity in the hippocampus and cerebral cortex. On the other hand, there were no significant differences in the glutamate levels in the three regions despite various treatments. These results suggested that bilobalide prevents MPN-induced reduction in GABA levels through potentiation by bilobalide of GAD activity, and this effect of bilobalide contributes to its anticonvulsant effect against MPN-induced convulsions.  相似文献   

3.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.  相似文献   

4.
The activity of ATP-ase and acetylcholinesterase (AChE) in crude mitochondrial fraction (CMF) and microsomal fraction of rat brain cortex and the spinal cord was studied in clonic seizures evoked by electroshock and 5 min after them. Inhibition of the Na, K-ATP-ase activity of the CMF of the brain at the clonic phase of convulsions and an increase in the activity of this enzyme in all the fractions of the tissues under study at the postconvulsive period were revealed. The activity of Ca-ATP-ase in the CMF of the brain increased during the convulsions and decreased at the postconfulsive period. The activity of Mg-ATP-ase remained unchanged. The AChE activity, as a rule increased during the convulsions, and grew even more during the postconvulsive period; the spinal cord tissue displayed a reduction of the activation effect. A possibility of structural reconstructions in the excitable neuron membranes during the convulsive activity is discussed.  相似文献   

5.
Many reports have suggested that gamma-aminobutyric acid (GABA) may play a role in organophosphate-induced convulsions. The balance between GABA and acetylcholine (ACh) in the brain also has been suggested by some investigators to be related to brain excitability. We examined these questions by studying the levels of GABA and ACh and the ratios of GABA to ACh in rat striata and cerebella (two major motor control areas in the CNS) after the administration of soman, an organophosphate acetylcholinesterase inhibitor also known as nerve gas. Male Sprague-Dawley rats weighing 250-300 g were injected subcutaneously with three different doses of soman: a subconvulsive dose of 40 micrograms/kg (approximately 30% of the ED50 for convulsions in rats), a convulsive dose of 120 micrograms/kg (approximately one ED50 for convulsions), and a higher convulsive dose of 150 micrograms/kg (approximately 120% of the ED50 for convulsions). The incidence and severity of convulsions were monitored in individual rats until they were sacrificed by focused microwave irradiation of the head at the following time points after soman administration: 4 min, a time prior to the onset of convulsions; 10 min, the time of onset of convulsions; 1 h, the time of peak convulsive activity; and 6 h, a time at which rats were recovering from convulsions. Results showed that in rat striata and cerebella, neither changes in levels of GABA and ACh nor changes in ratios of GABA to ACh were related to soman-induced convulsions, i.e., none of the changes in either levels or ratios of these two neurotransmitters were related to the initiation of, maintenance of, or recovery from soman-induced convulsions.  相似文献   

6.
The activity levels of leucine, isoleucine and valine aminotransferases were determined in various cerebral regions, liver and muscle of rats injected with a large dose of ammonium acetate and were compared with those of normal animals. In brain the activity levels of both leucine and isoleucine aminotransferases were elevated in both preconvulsive and convulsive states. Valine aminotransferase activity was suppressed in brain stem and corpus striatum and was elevated in cerebellum and hippocampus in preconvulsive states. During convulsions its activity was suppressed in cerebral cortex and hippocampus. Under these conditions, there was a suppression of both leucine and valine aminotransferases in muscle. In liver, however, the activities of these enzymes were elevated. The results suggested that the glutamate required for glutamine formation in hyperammonaemic states in brain might be obtained from branched chain amino acids, especially leucine and isoleucine.  相似文献   

7.
Subcutaneous administration of high doses of glutamate to rats during their first 10 days after birth produced a great reduction of GABA content and GAD activity in the adult mediobasal hypothalamus, both in male and female. In addition GABA content and GAD activity showed a slight significant decrease in female cerebellum and male striatum. Glutamate treatment was also followed by a significant increase in GABA content and GAD activity of male substantia nigra, cerebellum, hippocampus and of female olfactory bulb. No reduction in GABA-T activity was observed in different brain areas studied except in mediobasal hypothalamus. The results support the view that glutamate treatment had a direct toxic effect on GABA-ergic neurons in mediobasal hypothalamus. The changes in GAD activity observed in all areas studied may reflect the neuroendocrine changes determined by nucleus arcuate lesions.  相似文献   

8.
Abstract— A study was made to test the influence of rapid variations in glutamic acid decarboxylase (GAD) activity on the susceptibility of rats to hyperbaric oxygen (HBO). GAD was inhibited by the convulsant drug unsymmetrical dimethylhydrazine (UDMH) and reactivated by pyridoxine (PYR) after onset of convulsive activity. There was a relatively long induction period after UDMH injection until the onset of convulsions and the predictable interictal periods between successive periodic convulsions made it possible to study the impact of variations in GAD activity on survival rates, suspectibility to HBO and brain glycogen levels in a time sequence after UDMH administration. The experiments showed that UDMH interferes with aerobic metabolism in brain in such a way that profound alterations in resistance to acute oxygen poisoning resulted. An accumulation of substrate proximal to the enzyme block is assumed to develop during UDMH poisoning. The protective effect against HBO toxicity that was achieved after reactivation of GAD by PYR injection, as well as the rapid re-establishment of glycogen levels, is believed to speak in favour of this hypothesis.  相似文献   

9.
It has been established that white rats adapted to the low temperature of the environment (45 days 2-4 degrees C) in contrast to the animals undergoing such action during 3 days (cold stress) show resistance to the toxic action of the high oxygen pressure. The considerable removal of convulsions under the action of oxygen, the absence of increase of erythrocyte membrane permeability in the preconvulsive stage of hyperoxia and prevention of changes in the substrate specificity of type A monoamine oxidase both in preconvulsive and convulsive periods of oxygen intoxication are their characteristics.  相似文献   

10.
The time course of the effects of aminooxyacetic acid, γ-vinyl GABA, γ-acetylenic GABA, gabaculine, ethanolamine-O-sulphate (EOS) and valproic acid (VPA) on brain GABA content and the activities of glutamic acid decarboxylase (GAD) and GABA aminotransferase (GABA-T), the enzymes involved in biosynthesis and degradation of GABA, was re-determined and compared with the action on the electroconvulsive threshold in mice. All drugs caused significant increases in the seizure threshold, and the temporal pattern of this effect correlated rather well with the induced elevation of brain GABA. However, no clear relationship was found between the extent of GABA increase and the relative increase of seizure threshold. Except for VPA, the time course of the increment in brain GABA followed closely the inhibition of GABA-T. The activity of GAD was gradually decreased by γ-acetylenic GABA and a slow decline of GAD activity was also observed after γ-vinyl GABA. EOS and gabaculine suggesting a feedback repression of GAD synthesis by highly elevated GABA concentrations. Concomitant with significant reduction of GAD activity, a decrease in seizure threshold occurred though brain GABA levels remained markedly elevated. On the other hand, following administration of VPA the effect of GABA levels was paralleled by an increase in GAD activity indicating that the GABA-elevating action of this drug can be attributed at least in part to an activation of GABA synthesis. The data suggest that reduction of GAD activity may be an inevitable consequence of increasing brain GABA concentrations over a certain extent and this effect seems to limit the anticonvulsant efficacy of GABA-T inhibitors.  相似文献   

11.
The effects of DL-penicillamine (DL-PeA), hydrazine and toxopyrimidine (TXP, 2-methyl-6-amino-5-hydroxymethylpyrimidine) on gamma-aminobutyric acid (GABA) metabolism in mouse brain were studied. All these compounds inhibited the activity of glutamate decarboxylase [EC 4.1.1.15] (GAD) and slightly inhibited that of 4-aminobutyrate: 2-oxoglutarate aminotransferase [EC 2.6.1.19] (GABA-T). In contrast, very different effects were observed on GABA levels; hydrazine caused a marked increase, DL-PeA had no effect, and TXP caused a slight decrease in the content of the amino acid. These results could be described by an equation which related the excitable state to changes in the flux of the GABA bypass. Since the values obtained from the equation clearly reflect the seizure activity, it is suggested that the decreased GABA flux might be a cause of convulsions induced by these drugs.  相似文献   

12.
Abstract— The effects of accumulated endogenous GABA on the activity of L-glutamic acid decarboxylase (GAD) were studied in mouse brain. When the content of GABA in the brain was increased after administration in vivo of aminooxyacetic acid (AOAA), there was a reduction of GAD activity which could not be reversed by the addition of pyridoxal-5′-phosphate (PLP). Since inhibition of GAD activity by AOAA could be readily reversed by PLP, the reduction of GAD activity measured in the presence of added PLP indicated a decrease in the level of GAD apoenzyme. Similarly, increase of GABA content by hydrazine was also accompanied by a reduction in the level of GAD. Thiosemicarbazide and hydroxylamine did not affect the content of GABA appreciably, and in both cases levels of GAD remained unchanged when measured in the presence of added PLP. The correlation of the reduction in the levels of GAD with the increases in content of GABA suggests that GABA may regulate its own synthesizing enzyme by feedback repression.  相似文献   

13.
We have previously shown that in the adult rat the inhibition of brain glutamate decarboxylase (GAD) activity by pyridoxal phosphate--glutamyl hydrazone (PLPGH) administration does not result in convulsions, whereas in the adult mouse intense convulsions invariably occur. In the present study we report that, surprisingly, immature rats from 2 to 20 days of age treated with PLPGH (80 mg/kg) showed generalized tonic-clonic convulsions, whereas no convulsions at all were present in 30 days-old or older rats. GAD activity, measured by enzymic determination of GABA formed in forebrain homogenates, was inhibited by about 60% at the time of convulsions in 15 days-old and younger rats, whereas the inhibition was between 40 and 50% in older animals. The addition of the coenzyme pyridoxal 5-phosphate to the incubation medium completely reversed this inhibition. In all treated animals GABA levels were lower compared to controls. The results indicate that the susceptibility of GAD in vivo to a diminished cofactor concentration decreases with age. It seems possible that changes in the expression of enzyme forms are reflected in developmental variations in the susceptibility to seizures induced by vitamin B6 depletion, but alterations of other B6-dependent biochemical pathways cannot be discarded.  相似文献   

14.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

15.
Rats were given γ-vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA aminotransferase (GABA-T), by daily subcutaneous injection (100mgkg) for 11 days. Amino acids were quantitated in the brains of the γ-vinyl GABA-treated and control animals 24 h after the last injection, and enzyme activities of GABA-T and glutamic acid decarboxylase (GAD) were measured. Chronic administration of γ-vinyl GABA produced a 150% increase in brain GABA content, along with marked increases in the contents of B-alanine and homocarnosine. Brain GABA-T activity was reduced by 26%, and GAD activity was reduced by 22%. In addition, γ-vinyl GABA caused a marked increase in hypotaurine content in rat brain, suggesting that it acts as an inhibitor of hypotaurine dehydrogenase, and it produced significant decreases in brain contents of glutamine and threonine. Although it is an effective GABA-T inhibitor, γ-vinyl GABA apparently affects several other brain enzymes as well, and it may not be an ideal drug for elevating brain GABA levels in man.  相似文献   

16.
Changes in GABA content of various brain areas during different stages of picrotoxin-induced seizures and following pretreatment with the anti-convulsants phenobarbital andγ-acetylenic GABA were studied. Picrotoxin (6mg/kg) produced clonic/tonic convulsions associated with a 34% reduction in GABA content of the sensory motor cortex. A reduction of 24% was observed 1 min before the onset of seizure and the reduction in GABA content was reversible 20 min after the convulsion. No significant changes were observed in the cerebellum or spinal cord/medulla oblongata. Pretreatment with phenobarbital (100mg/kg) delayed the onset of convulsion and decreased the mortality rate without causing any change in GABA content at the pre-convulsive, convulsive or post-convulsive stages.γ-Acetylenic GABA (100mg/kg) has elevated GABA levels in different areas of the brain by 2–3-fold after 60 min treatment. This increase was reduced by 44% during the onset of picrotoxin-induced seizures. Picrotoxin convulsion can occur in the presence of normal, reduced or even elevated brain GABA content. The only consistent factor is a one-third reduction in GABA content before the onset of seizure.  相似文献   

17.
The amino acids glutamate, aspartate, gamma-aminobutyric acid (GABA), and glutamine were measured as their dansyl derivatives in whole brain and specific brain regions by a sensitive double-labelling technique at various times during the development of hypoglycaemic encephalopathy. Hypoglycaemia was induced by administration of insulin (100 i.u./kg) to 24-h fasted rats. No significant changes in glutamate, GABA, or glutamine were detected in whole brain at any time up to and including the onset of hypoglycaemic convulsions. In cerebral cortex, however, GABA levels were reduced to 65% or normal prior to the appearance of neurological symptoms of hypoglycaemia. Onset of symptoms (severe catalepsy and loss of righting reflex, but before the onset of convulsions) was accompanied by marked decreases of glutamate and glutamine in striatum and hippocampus. These regions, in addition to cerebral cortex, show the greatest vulnerability to hypoglycaemic insult, according to previous anatomical studies. Aspartate levels were significantly increased (p less than 0.01) in the cerebral cortex of convulsing animals, confirming a previous report. No changes were detectable in any of the amino acids studied in medulla-pons at any time during the progression of hypoglycaemia. Cerebral cortex and striatum showed a selective net loss of amino acids (2.2 and 3.5 mumol/g. respectively) prior to the onset of insulin-hypoglycaemic convulsions.  相似文献   

18.
The homocarnosine content and homocarnosine synthetase activity were studied in the brain of rats in normal state and under hyperoxia. The homocarnosine content is higher in phylogenetically old brain areas as compared with that in the cerebral hemispheres. Its nonuniform distribution in the brain is associated with different activity of homocarnosine-carnosine synthetase in the corresponding brain areas. At the preconvulsive stage of oxygen poisoning the homocarnosine content in all the brain areas does not change, the homocarnosine-carnosine synthetase activity is 32% lower. At the convulsive stage of hyperoxia the homocarnosine amount in the cerebral hemisphere decreases by 33%, in the midbrain and diencephalon -- by 70, in the medulla oblongata -- by 60, in the cerebellum -- by 58%. The decrease in the homocarnosine content correlates with that in the activity of homocarnosine-carnosine synthetase in the corresponding brain areas; in the cerebral hemispheres -- by 33%, in the midbrain and diencephalon -- by 50, in the medulla oblongata -- by 49, in the cerebellum -- by 40%.  相似文献   

19.
GABA is the principal neurotransmitter of the mammalian circadian system, and its activity is subject to diurnal and circadian variations, with maximal values in hypothalamic turnover, content and binding during the night. In this study we have examined rhythms in the proconvulsant effect of inhibition of glutamate decarboxylase (GAD) in hamsters (Mesocricetus auratus) as well as the anticonvulsant effect of androsterone, a neurosteroid that positively modulates the GABA(A) receptor. Administration of 10-60 mg/Kg of 3-mercaptopropionic acid (3-MPA, a GAD inhibitor) induced convulsions that were analyzed by an ad-hoc severity scale, with a lower sensitivity threshold at 24:00 h. Moreover, the latency for first and maximal convulsive response times was significantly lower at night. A similar temporal profile (maximal effect at midnight) was found for picrotoxin-induced seizures. Androsterone (40 mg/Kg) completely inhibited 3-MPA-induced tonic/clonic seizures at 12:00 h, while it had a partial inhibitory effect at 24:00 h. These results support the importance of temporal regulation of GABAergic modulation in the central nervous system.  相似文献   

20.
We examined the effects of in vivo hypoxia (10% O2/90% N2) on the gamma-aminobutyric acid (GABA)/benzodiazepine receptors and on glutamic acid decarboxylase (GAD) activity in the rat brain. Male Wistar rats were exposed to a mixture of 10% O2 and 90% N2 in a chamber for various periods (3, 6, 12, and 24 h). The control rats were exposed to room air. The brain regions examined were the cerebral cortex, striatum, hippocampus, and cerebellum. GABA and benzodiazepine receptors were assessed using [3H]muscimol and [3H]flunitrazepam, respectively. Compared with control values, GAD activity was decreased significantly following a 6-h exposure to hypoxia in all four regions studied. On the other hand, the numbers of both [3H]muscimol and [3H]flunitrazepam binding sites were increased significantly. The increase in receptor number tended to return to control values after 24 h. Treatment of the membrane preparations with 0.05% Triton X-100 eliminated the increase in the binding capacity. These results may represent an up-regulation of postsynaptically located GABA/benzodiazepine receptors corresponding to the impaired presynaptic activity under hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号