首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
7.
The androgen receptor (AR) can be activated in the absence of androgens by interleukin-6 (IL-6) in human prostate cancer cells. The events involved in ligand-independent activation of the AR are unknown, but have been suggested to involve phosphorylation of the AR itself or a receptor-associated protein. Steroid receptor coactivator-1 (SRC-1) has been shown to interact with the human AR and to modulate ligand-dependent AR transactivation and is regulated by phosphorylation by MAPK. To date, no one has examined the role of SRC-1 in ligand-independent activation of the AR by IL-6 or other signaling pathways known to activate the full-length receptor. This study addressed this and has revealed the following. 1) SRC-1 similarly enhanced ligand-independent activation of the AR by IL-6 to the same magnitude as that obtained via ligand-dependent activation. 2) Androgen and IL-6 stimulated the MAPK pathway. 3) MAPK was required for both ligand-dependent and ligand-independent activation of the AR. 4) Phosphorylation of SRC-1 by MAPK was required for optimal ligand-independent activation of the AR by IL-6. 5) Protein-protein interaction between endogenous AR and SRC-1 was dependent upon treatment of LNCaP cells with IL-6 or R1881. 6) Protein-protein interaction between the AR N-terminal domain and SRC-1 was independent of MAPK. 7) Ligand-independent activation of the AR did not occur by a mechanism of overexpression of either solely wild-type SRC-1 or mutant SRC-1 that mimics its phosphorylated form.  相似文献   

8.
9.
《Cancer epidemiology》2014,38(3):291-297
Astrocytic tumors are the most common primary brain tumors. It has been reported that androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ) and their coactivator SRC-1 and SRC-3 are involved in the regulation of the growth and development of many tumors, but their expression profiles and significances in the astrocytic tumors remain largely unknown. In this study, the expression of AR, ERs, and SRCs, and the possible roles of them in astrocytic neoplasm were evaluated and compared to normal brain tissues by nickel-intensified immunohistochemistry with tissue microarrays. The results showed that there were no age- or gender-differences regarding to the levels of these receptors or coactivators in astrocytic or normal brain tissues. In the high-grade astrocytic tissue, the levels of AR, ERs and SRC-3 were significantly decreased when compared to the low-grade astrocytic tissues, but the levels of SRC-1 remain unchanged. Correlation analysis revealed that the levels of AR, ERs and SRC-3 were negatively correlated to tumor differentiation, and the levels of SRC-3 were positively correlated to that of ERα. Furthermore, the decreased levels of SRC-3 were associated with an increase of ERβ in astrocytic tumors when compared to that of normal brain tissues. These above results indicate a combination of decreased expression of ERs, AR and SRC-3 but not SRC-1 may be involved in the tumorigenesis of gliomas, ERα/SRC-3 axis may play central role in the regulation these tumors.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Neuroendocrine tumor cells (NETCs) are commonly observed in prostate cancer. Their presence is associated with castration resistance, metastasis and poor prognosis. Cellular and molecular mechanisms for NETC initiation and growth are unknown. TRAMP mice develop heterogeneous adenocarcinomas induced by expression of the SV40-T/t oncogene in prostate epithelial cells. Here, we demonstrate prostate tumors in TRAMP mice with a mixed genetic background are characterized mostly by atypical hyperplasia (AH) containing steroid receptor coactiator-3-positive, androgen receptor-positive and synaptophysin-negative (SRC-3+/AR+/Syp-) cells. Few SRC-3+/AR-/Syp+ NETCs are present in their prostates. We generated TRAMP mice in which SRC-3 was specifically ablated in AR+/Syp- prostatic epithelial cells (termed PE3KOT mice). In these animals, we observed a substantial reduction in SRC-3-/AR+/Syp- AH tumor growth. There was a corresponding increase in SRC-3-/AR+/Syp- phyllodes lesions, suggesting SRC-3 knockout can convert aggressive AH tumors with mostly epithelial tumor cells into less aggressive phyllodes lesions with mostly stromal tissue. Surprisingly, PE3KOT mice developed many more SRC-3+/AR-/Syp+ NETCs versus control TRAMP mice, indicating SRC-3 expression was retained in NETCs. In contrast, TRAMP mice with global SRC-3 knockout did not develop any NETC, indicating SRC-3 is required for developing NETC. Analysis of cell-differentiating markers revealed that these NETCs might not be derived from the mature AR-/Syp+ neuroendocrine cells or the AR+/Syp- luminal epithelial tumor cells. Instead, these NETCs might originate from the SV40-T/t-transformed intermediate/progenitor epithelial cells. In summary, SRC-3 is required for both AR+/Syp- AH tumor growth and AR-/Syp+ NETC development, suggesting SRC-3 is a target for inhibiting aggressive prostate cancer containing NETCs.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号