首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Fe(II)-tris(2-pyridylmethyl)amine complexes, Fe(II)-tpa, having different co-existing anions, [Fe(tpa)(MeCN)2](ClO4)2 (1), [Fe(tpa)(MeCN)2](CF3SO3)2 (2) and [Fe(tpa)Cl2] (3), were prepared. Effective magnetic moments (evaluated by the Evans method) revealed that while 1-3 in acetone and 3 in acetonitrile (MeCN) have a high-spin Fe(II) ion at 298 K, the Fe(II) ions of 1 and 2 are in the low-spin state in MeCN. The aerobic oxidation of 1-3 was monitored by UV-Vis spectral changes in acetone or MeCN under air at 298 K. Only the high-spin Fe(II)-tpa complexes were oxidized with rate constants of kobs = 0.1-1.3 h−1, while 1 and 2 were stable in MeCN. The aerobic oxidation of 1 or 2 in acetone was greatly accelerated in the presence of pure, peroxide-free cyclohexene (1000 equiv.) and yielded a large amount of oxidized products; 2-cyclohexe-1-ol (A) and 2-cyclohexene-1-one (K) (A + K: 23 940% yield based on Fe; A/K = 0.3), and cyclohexene oxide (810%). Besides cyclohexene, aerobic oxidation of norbornene, cyclooctene, ethylbenzene, and cumene proceeded in the presence of 1 in acetone at 348 K without any reductant. Essential factors in the reaction are high-spin Fe(II) ion and labile coordination sites, both of which are required to generate Fe(II)-superoxo species as active species for the H-atom abstraction of hydrocarbons.  相似文献   

2.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

3.
A study of the magnetic anisotropies of three Ni cubane single-molecule magnets (SMM), [Ni(hmp)(MeOH)Cl]4·H2O (1·H2O) (hmpH = (2-hydroxymethyl)pyridine) [Ni(hmp)(dmb)Cl]4 (2) (dmb = 3,3-dimethylbutanol) and [Ni(hmp)(dmp)Cl]4 (3) (dmp = 2,2-dimethylpropanol) is reported. Frequency domain magnetic resonance spectroscopic (FDMRS) studies on 1, 2 and 3 as powder pellets reveal zero-field splitting (ZFS) for the spin ground states of these compounds in the solid state. The ZFS of the complexes 1 and 2 were determined and the presence of different molecular species was found in both complexes while only one species was found in 3. The nesting of the variable temperature variable field (VTVH) curves observed from magnetic circular dichroism (MCD) measurements on 1 in solution confirms the presence of ZFS. Virtually all the bands observed in the magnetic circular dichroism spectra possess the same sign, which may be related to the ferromagnetic exchange coupling. In addition, MCD measurements of a dilute solution demonstrate the molecular origin of the magnetic anisotropy in 1.  相似文献   

4.
By applying the hydrothermal in situ acylation reactions between alkyl-substituted pyridine-2,3-dicarboxylic acids and hydrazine hydrate, six pyridine-monoacylhydrazidate-coordinated transition-metal complexes [Mn(MPDH)2] 1, [M(MPDH)2(H2O)2]·2H2O (M2+ = Co2+2, Zn2+3), [Mn(EPDH)2(H2O)2] 4 and [M(EPDH)2(H2O)2] (M2+ = Zn2+5, Co2+6) (MPDH = 6-methylpyridine-2,3-dicarboxylhydrazidate; EPDH = 5-ethylpyridine-2,3-dicarboxylhydrazidate) were obtained. Although only compound 1 is a 1-D chained coordination polymer and the others are the mononuclear molecular entities, they all further self-assemble into the interesting supramolecular networks via hydrogen-bonded interactions between pyridine-monoacylhydrazidate ligands. Two Zn2+ compounds 3 and 5 possess the fluorescence properties with maximum emissions at 517 nm for 3 and 530 nm for 5 upon excitation, respectively. The magnetic analysis for compound 1 indicates there exists the antiferromagnetic interactions between the Mn(II) ions.  相似文献   

5.
Several palladium complexes of the type [Pd(im)2Cl2], [Pd(im)3Cl]Cl, and [Pd(im)4]Cl2 (im = imidazole 1, 1-methylimidazole 2, 1,2-dimethylimidazole 3, 1-butylimidazole 4, 4a, 1-phenylimidazole 6, 1-phenylimidazoline 7, and 1-methylimidazoline 8) were prepared and structurally characterized. The square planar structure of two new complexes with the composition [Pd(im)4]Cl2 (2b, 4b) was confirmed by X-ray analysis. In solution, exchange of imidazole ligands leading to heteroleptic products was evidenced by ESI-MS studies. Two bis-ligated complexes, bearing 1-methylimidazole (2a) and 1-propoxymethylimidazole (5) ligands, were obtained in the reaction of palladium with imidazoles formed by deprotection of one nitrogen atom in the respective imidazolium halides. Catalytic Suzuki-Miyaura reactions were carried out using the obtained palladium complexes in isopropanol-water solution. High yields of the cross-coupling products were obtained at 40 and 60 °C when 2-bromotoluene, 4-bromotoluene, and 4-bromoanizole were used as substrates.  相似文献   

6.
The reactions between the copper (II) salts [CuXL]PF6 (L: 2,6-[1-(2,6-diisopropylphenylimino)ethyl]pyridine) (X = Cl 1, X = Br 2) and LiTCNQ, in a DMF/water mixture, or Et3NH(TCNQ)2, in acetone, produced the new complexes [CuXL(TCNQ)] (X = Cl 3, X = Br 4). For both compounds, crystallographic studies have clearly evidenced the existence of dimeric complexes [{CuClL}(TCNQ)]2 owing to π-π overlap between two adjacent TCNQ radical anions. Compound 1 reacted with Et4N(C10N7) to afford the mononuclear derivative [CuClL(C10N7)] (5), while its reaction with K2C10N6 produced the dinuclear complex [(CuClL)2(C10N6)] (6). The crystal structures of complexes 5 and 6 have been determined by X-ray crystallography. Magnetic studies have revealed that compound 6 displays weak antiferromagnetic interactions between the two metal centres, conversely compounds 3 and 5 exhibit purely paramagnetic behaviours.  相似文献   

7.
Complexes cis,trans-Fe(CO)2(PMe3)2RR′ (R = CH3, R′ = Ph (2); R = CH3, R′ = CHCH2 (3); R = CHCH2, R′ = Ph (4); R = R′ = CHCH2 (5); R = R′ = CH3 (6)) were prepared by reaction of cis,trans-Fe(CO)2(PMe3)2RCl (1) with organolithium reagents LiR′. All complexes were characterized in solution by IR and 1H, 31P and, in a few cases, 13C NMR mono- and bi-dimensional spectroscopies. Complexes 5 and 6 were structurally characterized by X-ray diffractometric methods. In solution complexes 2, 3 and 4 undergo slowly coupling of the σ-hydrocarbyl substituents leading to Fe(CO)3(PMe3)2 and other decomposition products. Complex 6 was very stable in solution in the absence of nucleophiles and in the solid state. Complex 5 transformed through intramolecular coupling of the vinyl groups into Fe(CO)(PMe3)24-butadiene) (7), which was characterized in solution by IR and NMR spectroscopies.  相似文献   

8.
New phosphoramidite complexes of ruthenium chiral at the metal were synthesized, structurally characterized and their electrochemical and catalytic properties were studied. Reaction of the known chiral phosphoramidites (R = naphthyl, R′ = CH3, 1a; R = naphthyl, R′ = benzyl, 1b; R = octahydronaphthyl, R′ = benzyl, 1c) with CpRu(PPh3)2Cl afforded the title compounds CpRu(PPh3)(1a-c)(Cl) (2a-c) in 46-74% isolated yields. Fractional crystallization of 2b and 2c afforded the corresponding diastereopure complexes which are chiral both at the metal and at the ligand. The molecular structures of 2b and 2c were determined, revealing a pseudo octahedral coordination geometry about the ruthenium center. Electrochemical studies by cyclic voltammetry showed reversible electrochemical behavior of the metal complexes 2a-c. The new metal complexes are catalytically active in the Mukaiyama aldol reaction (24 h, room temperature, 31-53% yield), but almost no enantiomeric excesses for the products were obtained.  相似文献   

9.
A series of chiral Ag(I) and Cu(II) complexes have been prepared from the reaction between AgX (X = NO3, PF6, OTf) or CuX2 (X = Cl, ClO4) and chiral biaryl-based N-ligands. The rigidity of the ligand plays an important role in the Ag(I) complex formation. For example, treatment of chiral N3-ligands 1-3 with half equiv of AgX (X = NO3, PF6, OTf) gives the chiral bis-ligated four-coordinated Ag(I) complexes, while ligand 4 affords the two-coordinated Ag(I) complexes. Reaction of AgX with 1 equiv of chiral N4-ligands 5, 7, 8 and 10 gives the chiral, binuclear double helicate Ag(I) complexes, while chiral mono-nuclear single helicate Ag(I) complexes are obtained with N4-ligands 6 and 9. Treatment of either N3-ligand 1 or N4-ligand 9 or 10 with 1 equiv of CuX2 (X = Cl, ClO4) gives the mono-ligated Cu(II) complexes. All the complexes have been characterized by various spectroscopic techniques, and elemental analyses. Seventeen of them have further been confirmed by X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do exhibit catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

10.
Four novel topological nets of lanthanide metal-organic frameworks: [Sm2(op)3(H2O)]n (1), {Ln2(op)2(ox)(H2O)4] · H2O}n (Ln = La, 2; Sm, 3), {[La2(mp)2(ox)(H2O)4] · 2H2O}n (4), [La2(op)2(mp)(H2O)4]n (5) (op = o-phthalate, mp = m-phthalate, and ox = oxalate), have been hydrothermally synthesized and characterized. Compound 1 exhibits novel (3,4,5,6)-connected five-nodal two-dimensional net, compound 2 and 3 show the (3,4)-connected V2O5 topologies, compound 4 has the (4,5)-connected topological net, and compound 5 shows the (4,5)-connected four-nodal three-dimensional network. Photoluminescent analyses of 1 and 3 show strong blue emission in the solid state at room temperature.  相似文献   

11.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

12.
Hydrothermal reactions between H4ODPA (2,2′,3,3′-oxydiphthalic acid) and metal ion salts of Ba2+, Cu2+, Zn2+ and Gd3+ afford four novel coordination polymers [Ba(H2ODPA)(H2O)4] · H2O (1), [Cu2(ODPA)(H2O)3] · H2O (2), Zn2(ODPA)(H2O)2 (3) and [Gd(HODPA)(H2O)3.5] · H2O (4), accordingly. These polymers show great differences in regard to their structures and properties originated from the variation of size and coordination geometry of the metal ions. Compound 1 presents puckered achiral layer structure with (4.82) topology with helices, 2 has a 63 topology with copper tetramer as SBUs, 3 has chiral layer with two kinds of helices built up from Zn-binuclear “paddle-wheel” like SBUs, and 4 features a simple 1D helix with opposite chirality. Compound 3 shows obvious fluorescent emissions upon excitation. Compound 2 shows ferromagnetic interactions between CuII centers bridged by carboxylate groups, whereas compound 4 presents weak ferromagnetic interaction between GdIII ions.  相似文献   

13.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

14.
In our ongoing modification study of neo-tanshinlactone (1), we discovered 2-(furan-2-yl)naphthalen-1-ol (FNO) derivatives 3 and 4 as a new class of anti-tumor agents. To explore structure-activity relationships (SAR) of this scaffold, 18 new analogs, 6-12 and 14-24, were designed and synthesized. The C11-esters 7 and 12 displayed broad anti-tumor activity (ED50 1.1-4.3 μg/mL against seven cancer cell lines), while C11-hydroxymethyl 14 showed unique selectivity against the SKBR-3 breast cancer cell line (ED50 0.73 μg/mL). Compounds 15 and 22 displayed potent and selective anti-breast tumor activity (ED50 1.7 and 0.85 μg/mL, respectively, against MDA-MB-231). The SAR results demonstrated that the substitutions from the ring-opened lactone ring C of 1 are critical to the anti-tumor potency as well as the apparent tumor-tissue type selectivity. Treatment with 3 in Brca1f11/f11p53f5&6/f5&6Crec mice models significantly inhibited the proliferation of mammary epithelial cells and branching of mammary glands.  相似文献   

15.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

16.
Four lanthanide coordination polymers, [{Ln2(bpdc)3(phen)2(H2O)2} · (H2O)6]n (Ln = Sm (1); Eu (2); Gd (3), Tb (4)), were self-assembled from 2,2′-bipyridine-3,3′-dicarboxylic acid (H2bpdc),1,10-phenanthroline(phen) and corresponding lanthanide oxides by hydrothermal synthesis. Compounds 1-4 are found to be isomorphous and isostructural. Single-crystal X-ray diffraction studies show that compounds 1-4 are all of one-dimensional zigzag chain structures and extend to two-dimensional networks through π-π interactions and hydrogen bonds. The pyridyl nitrogen atoms of the 2,2′-bipyridyl unit in the bpdc ligand are uncoordinated in an anti-conformation along the central C-C bond of the ligand. Thermogravimetric analysis of 1-4 showed an obvious thermal stability indicating that the coordination habit of the metal ions with bpdc and phen has an effect on the overall framework. Photoluminescence measurement indicates that compound 2 and compound 4 are strong red and green emitters, respectively.  相似文献   

17.
Four new bis(phosphino)amine ligands (Ph2P)2N-C6H3-R, where R = 3,5-OMe (1), 2,5-OMe (2), 2,4-OMe (3) or 3,4-OMe (4), were prepared via aminolysis of the corresponding dimethoxyanilines with 2 equiv. of diphenylphosphine chloride in the presence of triethyl amine. Oxidation of these ligands with aqueous H2O2, elemental S8 or Se powder afforded the corresponding chalcogen oxides 1a-4a, sulfides 1b-4b and selenides 1c-4c in good yields. Reaction of 1-4 with [MCl2(cod)] (M = Pt, Pd; cod = cycloocta-1,5-diene) in equimolar ratios afforded cis-[MCl2{(Ph2P)2N-C6H3-R}] (M = Pt; R = 3,5-OMe 1d, R = 2,5-OMe 2d, R = 2,4-OMe 3d, and R = 3,4-OMe 4d. M = Pd; R = 3,5-OMe 1e, R = 2,5-OMe 2e, R = 2,4-OMe 3e, and R = 3,4-OMe 4e). Similarly, reaction of [Cu(CH3CN)4]PF6 with the 1-4 in 1:2 ratio gave [Cu{(Ph2P)2N-C6H3-R}2]PF6 (R = 3,5-OMe 1f, 2,5-OMe 2f, 2,4-OMe 3f and 3,4-OMe 4f). All new compounds were fully characterized by spectroscopy and elemental analysis and the molecular structures of seven representative compounds were determined by single-crystal X-ray crystallography. In addition, the palladium complexes were investigated as pre-catalysts in C-C coupling reactions.  相似文献   

18.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

19.
Stilbenoids, syagrusins A-B (1-2), and a stilbenolignan, 5-hydroxyaiphanol (3), along with three known phenylpropanoids (4-6), were isolated from seeds of Syagrus romanzoffiana. Compounds 1 and 2 possess unusual 1,4,4a,9a-tetrahydrofluoren-9-one and bicyclo[3.3.0]octanedione skeletons, respectively, whereas compound 3 is a stilbenolignan belonging to a very rare structural class of plant secondary metabolites. Their structures were elucidated by spectroscopic analyses. Compounds 1-3 exhibited moderate inhibitory activity against α-glucosidase with IC50 values of 16.9 μM (1), 23.7 μM (2) and 12.8 μM (3), respectively.  相似文献   

20.
Nine triorganotin(IV) complexes of the type R3SnL (L = L1 R = Me 1, Ph 2, PhCH23; L = L2 R = Me 4, Ph 5, PhCH26; L = L2 R = Me 7, Ph 8, PhCH29) have been obtained by reaction of new Schiff base HL1, HL2 or HL3 with triorganotin(IV) chloride in the presence of sodium ethoxide. All the complexes 1-9 were characterized by elemental, IR and NMR spectra analyses. Except for complexes 3, 4, 6, 9, the others were also characterized by X-ray crystallography diffraction analyses, which revealed that complexes 1, 2, 5, 7, 8 were four coordinated and displayed a capped tetrahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号