首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A series of novel ureas and thioureas of 3-decladinosyl-3-hydroxy 15-membered azalides, were discovered, structurally characterized and biologically evaluated. They have shown good antibacterial activity against selected Gram-positive and Gram-negative bacterial strains. These include N″ substituted 9a-(N′-carbamoyl-γ-aminopropyl)- (6a,c), 9a-(N′-thiocarbamoyl-γ-aminopropyl)- (7a,e), 9a-[N′-(β-cyanoethyl)-N′-(carbamoyl-γ-aminopropyl)]- (9a-c, 9g) 9a-[N′-(β-cyanoethyl)-N′-(thiocarbamoyl-γ-aminopropyl)]-derivatives (10d-f) of 5-O-desosaminyl-9-deoxo-9-dihydro-9a-aza-9a-homoerythronolide A (3).Among the synthesized compounds thiourea 7a and urea 9b have shown substantially improved activity comparable to azithromycin (1) and significantly better activity than the 3-decladinosyl-azithromycin (2) and the parent 3-cladinosyl analogues against efflux-mediated resistant S. pneumoniae.  相似文献   

2.
Four analogs with 3′-O-alkyl groups (9a: CH3, 9b: C2H5, 9c: C13H27 or 9d: CH2Ph) instead of the 3′-O-sulfate anion in salacinol (1), a naturally occurring potent α-glucosidase inhibitor, were synthesized by the coupling reaction of 1,4-dideoxy-1,4-epithio-d-arabinitols (18a and 18b) with appropriate epoxides (10a-10d). These analogs showed equal or considerably higher inhibitory activity against rat small intestinal α-glucosidases than the original sulfate (1), and one of them (9d) was found more potent than currently used α-glucosidase inhibitors as antidiabetics. Thus, introduction of a hydrophobic moiety at the C3′ position of this new class of inhibitor was found beneficial for onset of stronger inhibition against these enzymes.  相似文献   

3.
Chalcone type compound 1a ((E)-6′-benzylidene-4a′-methyl-4′,4a′,7′,8′-tetrahydro-3′H-spiro[[1,3]dithiolane-2,2′-naphthalen]-5′(6′H)-one) was discovered as an potent inhibitor in melanogenesis. To define its structure-activity relationship, a series of analogs 1b-n, dithiolane truncated 2a-b and ring A removed 3a-e were prepared and evaluated. The electron donating substitution on the phenyl ring (ring C) rather than an electron withdrawing group and dithiolane motif of 1 are needed for the activity enhancement. The scaffold containing both rings A and B associated with α,β-unsaturated system connected to phenyl of 1 was essential for antimelanogenesis.  相似文献   

4.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

5.
Macrolide (R)-de-O-methyllasiodiplodin (1), discovered to be a potent nonsteroidal antagonist of the mineralocorticoid receptor (MR), was synthesized via an efficient method and evaluated for MR antagonistic activity together with its analogs. Among all the tested compounds, compounds 18a, 18b and 18c, exhibited more potent antagonistic activity against MR with IC50 values ranging from 0.58 to 1.11 μM. Generally, it was obviously demonstrated that acetylation at phenolic hydroxyl groups and the ring size in analogs of 1 were very important for MR antagonist activity.  相似文献   

6.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

7.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   

8.
Some 2-amino-4,6-diarylpyrimidines 2 have been prepared from substituted benzylideneacetophenones and guanidine hydrochloride in the presence of alkali by conventional heating in alcoholic medium and microwave heating in solvent-free conditions. N-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl)-N′-(4′,6′-diarylpyrimidin-2′-yl)thioureas 4 have been synthesized by reaction of per-O-acetylated glucopyranosyl isothiocyanate 1 and substituted 2-amino-4,6-diarylpyrimidines 2. Two different methods have been used, namely, refluxing in anhydrous dioxane and solvent-free microwave-assisted coupling. The second procedure afforded higher yields in much shorter reaction times. The compounds 2 and 4 were tested for their antibacterial and antifungal activities in vitro against Staphylococcus epidermidis, Enterobacter aerogenes and Candida albicans by disc diffusion method.  相似文献   

9.
The reaction of trans(N)-[Co(d-pen)2] (pen = penicillaminate) with HgCl2 or HgBr2 in the molar ratios of 1:1 gave the sulfur-bridged heterodinuclear complex, [HgX(OH2){Co(d-pen)2}] (X = Cl (1a) or Br (1b)). A similar reaction in the ratio of 2:1 produced the trinuclear complex, [Hg{Co(d-pen)2}2] (1c). The enantiomers of 1a and 1c, [HgCl(OH2){Co(l-pen)2}] (1a′) and [Hg{Co(l-pen)2}2] (1c′), were also obtained by using trans(N)-[Co(l-pen)2] instead of trans(N)-[Co(d-pen)2]. Further, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 1:1 resulted in the formation of [HgCl(OH2){Co(d-pen)(l-pen)}] (2a). During the formations of the above six complexes, 1a, 1b, 1c, 1a′, 1c′, and 2a, the octahedral Co(III) units retain their configurations. On the other hand, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 2:1 gave not [Hg{Co(d-pen)(l-pen}2] but [Hg{Co(d-pen)2}{Co(l-pen)2}] (2c), accompanied by the ligand-exchange on the terminal Co(III) units. The X-ray crystal structural analyses show that the central Hg(II) atom in 1c takes a considerably distorted tetrahedral geometry, whereas that in 2c is of an ideal tetrahedron. The interconversion between the complexes is also examined. The electronic absorption, CD, and NMR spectral behavior of the complexes is discussed in relation to the crystal structures of 1c and 2c.  相似文献   

10.
A series of 4-styrylcoumarin have been synthesized by Knoevenagel condensation between substituted 4-methylcoumarin-3-carbonitrile and different heterocyclic or aromatic aldehydes. 4-Methylcoumarin-3-carbonitrile has been synthesized by the base catalyzed reaction between substituted 2-hydroxyacetophenone and ethyl cyanoacetate. The structures of the newly synthesized compounds were confirmed by 1H NMR, IR and mass spectral analysis. All the compounds were evaluated for their anti-inflammatory activity (against TNF-α and IL-6) and anti-tubercular activity. Compounds 6a, 6h and 6j exhibited promising activity against IL-6 with 72-87% inhibition and compound 6v showed potent activity against TNF-α with 73% inhibition at 10 μM concentration. Whereas compounds 6n, 6o, 6r and 6u showed very good anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain at <6.25 μM.  相似文献   

11.
The reaction of cis-[RuCl2(dppb)(N-N)], dppb = 1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe2, 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe2)(dppb)(N-N)]PF6, N-N = bipy (1) and Me-bipy (2), bipy = 2,2′-bipyridine and Me-bipy = 4,4′-dimethyl-2,2′-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl2(dppb)(N-N)], N-N = bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe2. The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC50 values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25 μg/mL, compared to the free ligands (MIC of 25 to >50 μg/mL) and the drugs used to treat tuberculosis. Complexes 1 and 2 also showed promising antitumor activity, with IC50 values of 0.46 ± 0.02 and 0.43 ± 0.08 μM, respectively, against MDA-MB-231 breast tumor cells.  相似文献   

12.
A series of novel substituted imidazole derivatives were synthesized and have been screened in vivo for their hypotensive and acute toxicity activities. Out of seventeen compounds eight compounds (2b, 2c, 3b, 3c, 3f, 4a, 4b and 4c) have shown good hypotensive and bradycardiac responses. Compounds 3b, 3c, 3f and 4c have shown better activity than reference drug clonidine. All the compounds have shown ALD50 >1000 mg/kg with maximum in 2e and 4c (>1200 mg/kg).  相似文献   

13.
Organometallic analogs of chloroquine (CQ) are of interest as drug candidates that may be able to overcome the widespread chloroquine resistance developed by malaria parasites. Two new chromium arene CQ-analogs: [η6-N-(7-chloroquinolin-4-yl)-N′-(2-dimethylamino-methylbenzyl)-ethane-1,2-diamine]tricarbonylchromium 4 and [η6-N-(7-chloroquinolin-4-yl)-N′-(2-dimethylaminobenzyl)-ethane-1,2-diamine]tricarbonylchromium 9 have been synthesized and characterized. In addition, X-ray crystal structures of the intermediates (η6-benzyldimethylamine)tricarbonylchromium 2, [η6-2-((dimethylamino)methyl) benzaldehyde]tricarbonylchromium 3 and p-6-dimethylaminobenzaldehyde)tricarbonyl chromium 8 are reported. Compound 4 was more active than chloroquine against both CQ-sensitive and CQ-resistant strains of Plasmodium falciparum when antimalarial activity was tested in vitro. The activity of 4 against the CQ-resistant parasite strain was twice as high as for the organic ligand alone (IC50 values of 33.9 nM versus 63.1 nM).  相似文献   

14.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened.  相似文献   

15.
The reactions of six diimine ligands with Cu(II) and Ni(II) halide salts have been investigated. The diimine ligands were Ph2CN(CH2)nNCPh2 (n = 2 (Bz2en, 1a), 3 (Bz2pn, 1b), 4 (Bz2bn, 1c)), N,N′-bis-(2-tert-butylthio-1-ylmethylenebenzene)-2,2′diamino-biphenyl (2), N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,3-diaminobenzene (3) and N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,2-ethanediamine (4). Reactions of 1a-c, 2-4 with CuCl2·2H2O in dry ethanol at ambient temperature led to complete or partial hydrolysis of the diimine ligands to ultimately form copper diamine complexes. The non-hydrolyzed complexes of 1b and 1c, [Cu(L)Cl2] (L = 1b, 1c), could be isolated when the reactions were carried out at low temperatures, and the half-hydrolyzed complex [Cu(Bzpn)Cl2] could also be identified via X-ray crystallography. Similarly, reactions of 1a or 1b with NiCl2·6H2O or [NiBr2(dme)] led to rapid hydrolysis of the imines and Ni complexes containing half-hydrolyzed 1a (Bzen; [trans-[Ni(Bzen)2Br2]) and 1b (Bzpn; [Ni(Bzpn)Br2] could be isolated and identified via single crystal X-ray analysis. Kinetic studies were made of the hydrolyses of 1a, 1b in THF and 2 in acetone, in the presence of Cu(II), and of 1a in acetonitrile, in the presence of Ni(II). Activation parameters were determined for the latter reaction and for the copper-catalyzed hydrolysis of 2; the relatively large negative activation entropies clearly indicate rate-determining steps of an associative nature.  相似文献   

16.
A series of novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of biological interest were prepared by sequential Bigineli’s reaction, reduction followed by reaction of resulting amines with different arylisocynates. All the synthesized (1-23) compounds were screened against the pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological activity evaluation study reveled that among all the compounds screened, compounds 12 and 17 found to have promising anti-inflammatory activity (68-62% TNF-α and 92-86% IL-6 inhibitory activity at 10 μM). Interestingly compounds 3, 4, 5, 6, 15, 22 and 23 revealed promising antimicrobial activity at MIC of 10-30 μg/mL against selected pathogenic bacteria and fungi.  相似文献   

17.
Four halogenated cyclopropane derivatives with a side chain containing a primary (1 and 2) or secondary (3 and 4) alcohol moiety were subject to kinetic resolution catalyzed by lipases. Two of them containing secondary alcohol groups gave excellent results with Candida antarctica lipase B with E-values around 1000. Two enantiopure alcohols and two enantiopure butanoates are described: (1S,1S)-1-(2′,2′-dichloro-3′,3′-dimethylcyclopropyl) ethanol (3), the corresponding (1R,1R)-butanoate (3b) and (1S,1S)-1-(1′-methyl-2′,2′-dibromocyclopropyl) ethanol (4) and the corresponding (1R,1R)-butanoate (4b).  相似文献   

18.
Chemical transformation studies of the marine sesquiterpene phenol (S)-(+)-curcuphenol (1), isolated from the Jamaican sponges Myrmekioderma styx, were accomplished. In order to optimize the activity and better understand the SAR of (S)-(+)-curcuphenol, nineteen semisynthetic analogs were prepared and evaluated for activity against infectious diseases. A number of analogs showed significant activity against Mtb and Leishmania donovani, while showed good to moderate activities in antibacterial and antifungal assays as well as against Plasmodium falciparium (D6 clone) and (W2 clone). The analogs a, c, h, and r exhibited Mtb activity with MICs of 24.6, 41.2, 6.90, and 50.5 μM, respectively. Analog f showed enhanced activity against L. donovani with an IC50 of 0.6 μM and IC90 of 40 μM respectively.  相似文献   

19.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

20.
Two new quinazolinones alkaloids, R(+)-2-(heptan-3-yl)quinazolin-4(3H)-one (1) and (2R,3′R)+(2S,3′R)-2-(heptan-3-yl)-2,3-dihydroquinazolin-4(1H)-one (2) (a pair of epimers), as well as seven known analogues, 2-methylquinazolin-4(3H)-one (3), 2-benzylquinazolin-4(3H)-one (4), cyclo-(Pro-Ile), cyclo-(Pro-Leu), cyclo-(Pro-Val), cyclo-(Pro-Phe), and cyclo-(Tyr-Pro) were isolated from the n-butyl alcohol extract of the marine-derived bacterium Bacillus cereus 041381. The new compounds were identified by spectroscopic analysis and chemical synthesis. Four optical isomers 58 were also synthesized. Compounds 18 all showed moderate antifungal activity against Candida albicans with MIC values of 1.3−15.6 μM. Compound 5 exhibits the most powerful antifungal activity, which may reveal that S-configuration and 2,3-double bond were necessary for antifungal activity, and the racemization at C-2 and C-3′ reduced the antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号