首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic N-Methyl-d-aspartate (NMDA) administration, a model of excitotoxicity, and chronic intracerebroventricular lipopolysaccharide infusion, a model of neuroinflammation, are reported to upregulate arachidonic acid incorporation and turnover in rat brain phospholipids as well as enzymes involved in arachidonic acid metabolism. This suggests cross-talk between signaling pathways of excitotoxicity and of neuroinflammation, involving arachidonic acid. To test whether chronic NMDA administrations to rats can upregulate brain markers of neuroinflammation, NMDA (25 mg/kg i.p.) or vehicle (1 ml saline/kg i.p.) was administered daily to adult male rats for 21 days. Protein and mRNA levels of cytokines and other inflammatory markers were measured in the frontal cortex using immunoblot and real-time PCR. Compared with chronic vehicle, chronic NMDA significantly increased protein and mRNA levels of interleukin-1beta, tumor necrosis factor alpha, glial fibrillary acidic protein and inducible nitric oxide synthase. Chronic NMDA receptor overactivation results in increased levels of neuroinflammatory markers in the rat frontal cortex, consistent with cross-talk between excitotoxicity and neuroinflammation. As both processes have been reported in a number of human brain diseases, NMDA receptor inhibitors might be of use in treating neuroinflammation in these diseases.  相似文献   

2.
Insulin receptor activity and its relationship with catecholamines in rat young, middle aged and old red blood cells were investigated in short term (4-6) weeks and long term (6-8 months) hyperglycemia and hyperinsulinemia. Loss of insulin receptor activity is linear with cellular ageing and norepinephrine and epinephrine levels increase with age together with levels of glycosylated hemoglobin in control animals and this correlation is altered in hyperglycemia and hyperinsulinemia. These results suggest that loss of insulin receptor in cellular ageing is probably part of a more generalised alteration which is possibly brought about by glycosylation.  相似文献   

3.
It is well established that inflammatory changes contribute to brain ageing, and an increased concentration of proinflammatory cytokine, interleukin-1beta (IL-1beta), has been reported in the aged brain associated with a deficit in long-term potentiation (LTP) in rat hippocampus. The precise age at which changes are initiated is unclear. In this study, we investigate parallel changes in markers of inflammation and LTP in 3-, 9- and 15-month-old rats. We report evidence of increased hippocampal concentrations of the proinflammatory cytokines IL-1alpha, IL-18 and interferon-gamma (IFNgamma), which are accompanied by deficits in LTP in the older rats. We also show an increase in expression of markers of microglial activation, CD86, CD40 and intercellular adhesion molecules (ICAM). Associated with these changes, we observed a significant impairment of hippocampal LTP in the same rats. The importance of microglial activation in the attenuation of long-term potentiation (LTP) was demonstrated using an inhibitor of microglial activation, minocycline; partial restoration of LTP in 15-month-old rats was observed following administration of minocycline. We propose that signs of neuroinflammation are observed in middle age and that these changes, which are characterized by microglial activation, may be triggered by IL-18.  相似文献   

4.
Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn’t induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn’t implicate GSK3 inactivation.  相似文献   

5.
Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.  相似文献   

6.
β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16 kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1 μg) effectively alleviated Aβ1–42 (20 μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1–42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP.  相似文献   

7.
8.
9.
Anthocyanins (ANT) are polyphenolic flavonoids with antioxidant and neuroprotective properties. This study evaluated the effect of ANT treatment on cognitive performance and neurochemical parameters in an experimental model of sporadic dementia of Alzheimer's type (SDAT). Adult male rats were divided into four groups: control (1 ml/kg saline, once daily, by gavage), ANT (200 mg/kg, once daily, by gavage), streptozotocin (STZ, 3 mg/kg) and STZ plus ANT. STZ was administered via bilateral intracerebroventricular (ICV) injection (5 μl). ANT were administered after ICV injection for 25 days. Cognitive deficits (short-term memory and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) and Na+-K+-ATPase activity in the cerebral cortex and hippocampus were evaluated. ANT treatment protected against the worsening of memory in STZ-induced SDAT. STZ promoted an increase in AChE and Na+-K+-ATPase total and isoform activity in both structures; ANT restored this change. STZ administration induced an increase in lipid peroxidation and decrease in the level of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the cerebral cortex; ANT significantly attenuated these effects. In the hippocampus, an increase in reactive oxygen species (ROS), nitrite and lipid peroxidation levels, and SOD activity and a decrease in CAT and GPx activity were seen after STZ injection. ANT protected against the changes in ROS and antioxidant enzyme levels. In conclusion, the present study showed that treatment with ANT attenuated memory deficits, protected against oxidative damage in the brain, and restored AChE and ion pump activity in an STZ-induced SDAT in rats.  相似文献   

10.
Great attention has been devoted both to ageing phenomena at the mitochondrial level and to the antioxidant status of membrane structures. These kinds of investigations are difficult to perform in the brain because of its heterogeneity. It is known that synaptic heavy mitochondria (HM) may represent an aged mitochondrial population characterized by a partial impairment of their typical mitochondrial function. We arranged a novel system requiring no extraction procedure, very limited handling of the samples and their direct injection into the HPLC apparatus, to carry out, for the first time, a systematic and concomitant determination of vitamin E, Coenzyme Q9 (CoQ9) and Coenzyme Q10 (CoQ10) contents in rat brain mitochondria. The trends found for CoQ9 and CoQ10 levels in synaptic and non-synaptic occipital cerebral cortex mitochondria during rat ageing are consistent with previous data. Hydroperoxides (HP) differed with age and it was confirmed that in the HM fraction the summation of contributions results in an oxidatively jeopardized subpopulation. We found that vitamin E seems to increase with age, at least in non-synaptic free (FM) and synaptic light (LM) mitochondria, while it was inclined to remain substantially constant in HM.  相似文献   

11.
1. The choline acetyltransferase and acetylcholinesterase activities in the cerebral cortex and hippocampus and muscarinic binding in the cerebral cortex did not differ significantly between male and female Wistar rats. 2. Choline acetyltransferase activities in the cerebral cortex and hippocampus of rats were not altered during ageing. 3. Acetylcholinesterase activities in these same brain areas were markedly decreased during ageing, possibly reflecting a loss of postsynaptic enzyme activity. 4. When measured using 3H-pirenzepine, binding to the postsynaptic muscarinic receptors was slightly higher in 26-month-old rats than in 12-month-old rats; total muscarinic binding measured using 3H-quinuclidinyl benzilate did not alter during ageing. 5. The present study does not support the hypothesis that in the rat brain the number of postsynaptic muscarinic binding sites decreases during ageing.  相似文献   

12.
Chlorpyrifos exposure leads to various neurological disorders adverting disturbance in molecular pathways and normal brain functions. Major complications arise when these potent nerve agents access neuronal mechanisms causing adverse effect on acetylcholinesterase and brain lipids with generation of reactive oxygen species. Chlorpyrifos elicits chronic intoxication leading to redox disturbance with irreversible brain damage and oxidative stress. In the present study, neuroprotective and anti-apoptotic effects of eugenol (EO), a phenolic antioxidant, against chlorpyrifos-induced neurotoxicity was explored on rat brain cortex. Rats treated orally with chlorpyrifos [89.4 mg/kg body weight (BW)] for 15 consecutive days showed changes in brain lipid profile, increased levels of lipid peroxidation, inhibition of acetylcholinesterase activity, and changes in antioxidant enzymes. EO (250 mg/kg BW), administered 1 h after chlorpyrifos treatment, restored lipid, acetylcholinesterase, and antioxidant enzyme levels of brain cortex by suppressing chlorpyrifos-induced oxidative stress and neurotoxicity. Histological findings further demonstrated damage to brain morphology with increased protein levels of caspase-3 in CPF-treated animals. Alterations caused by neurotoxic effects of chlorpyrifos were attenuated by EO administration with decreased protein expressions of caspase-3. Thus, through its antioxidant and anti-apoptotic activities, EO showed protective effect against chlorpyrifos-induced neuronal damage.  相似文献   

13.
Although deficits in synaptic plasticity have been identified in aged or neuroinflamed animals with memory impairments, few studies have examined the cellular basis of plasticity in such animals. Here, we examined whether chronic neuroinflammation altered long-term depression (LTD) and studied the underlying mechanism of LTD impairment by neuroinflammation. Chronic neuroinflammation was induced by administration of lipopolysaccharide (LPS) to the fourth ventricle. Excitatory postsynaptic potentials were recorded extracellularly in the rat hippocampal CA1 area to examine alterations in synaptic plasticity. Chronic administration of LPS induced remarkable memory impairment in the Morris water maze test. N-methyl-d-aspartate receptor (NMDAR)-dependent LTD was almost absent in LPS-infused animals. The AMPA receptor (AMPAR)-mediated synaptic response was reduced in the LPS-infused group. These results suggest that reduction in NMDAR-dependent LTD might arise because of alterations in postsynaptic AMPARs as well as NMDARs and that such changes may be present in mild and early forms of Alzheimer-type dementia.  相似文献   

14.
Microglial M1 depolarization mediated prolonged inflammation contributing to brain injury in ischemic stroke. Our previous study revealed that Genistein-3′-sodium sulfonate (GSS) exerted neuroprotective effects in ischemic stroke. This study aimed to explore whether GSS protected against brain injury in ischemic stroke by regulating microglial M1 depolarization and its underlying mechanisms. We established transient middle cerebral artery occlusion and reperfusion (tMCAO) model in rats and used lipopolysaccharide (LPS)-stimulated BV2 microglial cells as in vitro model. Our results showed that GSS treatment significantly reduced the brain infarcted volume and improved the neurological function in tMCAO rats. Meanwhile, GSS treatment also dramatically reduced microglia M1 depolarization and IL-1β level, reversed α7nAChR expression, and inhibited the activation of NF-κB signaling in the ischemic penumbra brain regions. These effects of GSS were further verified in LPS-induced M1 depolarization of BV2 cells. Furthermore, pretreatment of α7nAChR inhibitor (α-BTX) significantly restrained the neuroprotective effect of GSS treatment in tMCAO rats. α-BTX also blunted the regulating effects of GSS on neuroinflammation, M1 depolarization and NF-κB signaling activation. This study demonstrates that GSS protects against brain injury in ischemic stroke by reducing microglia M1 depolarization to suppress neuroinflammation in peri-infarcted brain regions through upregulating α7nAChR and thereby inhibition of NF-κB signaling. Our findings uncover a potential molecular mechanism for GSS treatment in ischemic stroke.  相似文献   

15.
16.
Zhu M  Fan XL  Yang WL  Jiang Y  Ma L 《生理学报》2004,56(5):559-565
G蛋白耦联受体激酶5(GRK5)在G蛋白耦联受体信号转导中起重要调节作用。本文研究了单次给予成瘾性药物吗啡、海洛因和可卡因对大鼠脑内GRK5mRNA水平的调控作用,并选取吗啡为代表,观察单次或多次给予吗啡后大鼠脑内GRK5蛋白含量的变化。结果发现:(1)单次给予吗啡(10mg/kg)、海洛因(1mg/kg)或可卡因(15mg/kg)均可引起大鼠大脑顶叶皮层、颞叶皮层和海马的GRK5 mRNA水平显著上升;(2)单次或多次给予吗啡注射可以显著上调大鼠大脑皮层GRK5蛋白含量,而多次给予吗啡显著下调丘脑GRK5含量。我们的结果首次证明成瘾性药物对大脑皮层、海马等脑区的GRK5在mRNA水平和蛋白水平都有调控作用,提示GRK5可能在精神活性物质的成瘾中起作用。  相似文献   

17.
Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24–72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.  相似文献   

18.
Abstract: We established the cartography of 11 exo- and endopeptidases in the frontal and parietal cortices and in the cerebellum of brains of patients diagnosed with a senile dementia of the Alzheimer's type (SDAT). Comparison with those of four subjects who had died without known neurologic or psychiatric illness indicated that there existed a region-specific alteration of the peptidase contents in the disease. In the frontal area of SDAT brains, postproline dipeptidyl aminopeptidase and aminopeptidase M activities were significantly reduced. In the parietal cortex of SDAT brain, activities of three additional endopeptidases—angiotensin-converting enzyme, proline endopeptidase, and endopeptidase 24.15—were also drastically reduced. In contrast, the cerebellum displayed a set of proteolytic activities that remained unaffected in SDAT brain. The putative influence of the disease on the catabolic fates of neurotensin, neuropeptide Y, and somatostatin(1–14) was investigated. Neurotensin was catabolized at identical rates in the frontal and parietal cortices in nondemented and SDAT brains. In contrast, neuropeptide Y metabolism was slowed down in SDAT brains in the frontal but not in the parietal cortex. Finally, the degradation velocities of somatostatin(1–14) were lowered in both cortical areas of SDAT brains. It is interesting that, by means of specific peptidase inhibitors, we demonstrated that endopeptidase 24.15 participated in somatostatin(1–14) inactivation in the parietal but not in the frontal cortex. It is suggested that the lowering of the rate of somatostatin(1–14) inactivation in the parietal cortex of SDAT brains likely results from the depletion of endopeptidase 24.15 in this brain region.  相似文献   

19.
Cholinesterase (ChE) activity was measured as a possible marker of cholinergic neurotransmission of the brain in CSF of 93 patients with probable Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) and of 29 control patients. ChE activity in CSF was decreased significantly in the AD/SDAT patients as compared to the controls. This reduction correlated significantly with the various measures of the severity of dementia. However, the reduction of ChE activity was only moderate (25–30%) even in patients with the most severe dementia and nonsignificant in patients with early symptoms of AD/SDAT. The significance of various confounding factors, which may interfere with CSF ChE measurements is discussed. Our findings seem to indicate that the deficiency of cholinergic neurons is not directly reflected in CSF and that the measurements of ChE activities in CSF are not helpful in diagnosing AD/SDAT. In the autopsy study the activities of cholineacetyltransferase (ChAT) and ChE were determined for ten brain areas of 20 AD/SDAT patients and of 14 controls. In AD/SDAT patients ChAT activity was profoundly decreased (50–85% decrease) in the cortical areas and hippocampus, but was unchanged or only mildly reduced in other subcortical brain areas. This study further confirms that the affection of cholinergic neurons is limited to projections from nucleus basalis to cortex and hippocampus, whereas other cholinergic neurons, like in striatum, seem to be relatively spared. In general, the activities of ChAT and ChE were lower in Alzheimer patients dying at younger age suggesting more severe disease process with these patients.  相似文献   

20.
Clinical trials of insulin and experiments on its intranasal administration to animals suggest that this hormone can be efficient in treating human neurodegenerative and some other diseases associated with brain injury. However, the mechanism of the neuroprotective effect of intranasal insulin is far from being understood. The aim of the present work was to study the protective and antioxidative effects of insulin at various concentrations on rat brain cortical neurons under oxidative stress conditions and to estimate the contribution of protein kinase B (Akt) activity modulation to insulin-induced enhancement of neuronal viability in the rat brain cortex. The protective effect of insulin was shown to be dose-dependent within the nanomolar range (1 nM < 10 nM < 100 nM and/or 1 μM). A study of the antioxidative effect of insulin revealed the efficacy of such a low concentration as 1 nM. Immunoblot analysis showed that insulin at concentrations of 100 nM and 1 μM activates Akt both in neurons and control cells at different times after their exposure to a pro-oxidant agent. LY294002, a specific PI3K/Akt signaling pathway inhibitor, was shown to significantly reduce the protective and antioxidative effects of insulin. Insulin-induced upregulation both of Akt activity and antiapoptotic protein Bcl-2 appears to play an important role in the neuroprotective effect of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号