首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
Platelet-activating factor (PAF) is a biologically active phospholipid that is released locally during acute inflammatory reactions and tissue injury. Since there is evidence that the biochemical events of mammalian ovulation resemble an inflammatory reaction, the objective of this study was to determine whether ovarian levels of PAF change during ovulation. At 2-h intervals during the ovulatory process in gonadotropin-primed 25-day-old Wistar rats, the ovaries were extirpated, homogenized, and extracted for lipids. The extracts were subjected to thin-layer chromatography (TLC), and the portion of the silica gel that comigrated with PAF was re-extracted and assayed for PAF activity. The PAF was measured (in fmole equivalents of synthetic PAF) by a bioassay based on the capacity of aliquots of the extracts to release [3H]-serotonin from platelets isolated from whole blood of rabbits and prelabeled with [3H]-serotonin. The ovarian level of PAF decreased (p less than 0.01) by 36% from 6.67 +/- 0.77 to 4.27 +/- 0.45 fmoles/mg ovary by 2 h after treatment with human chorionic gonadotropin (hCG), and it declined another 14% by 4 h after hCG. The ovarian PAF remained at this reduced level for up to 24 h after hCG. The administration of indomethacin (5 mg/rat, s.c.) or epostane (5 mg/rat, s.c.) at 1 h after hCG prevented ovulation, but neither drug affected the decline in ovarian PAF. Preliminary tests showed that the lipid extracts from the ovaries also contained PAF inhibitor(s) that comigrated with PAF on the TLC plates. Similar to PAF, the lipid-soluble inhibitor(s) decreased (p less than 0.05) in the ovaries within 4 h after hCG treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The extraction of a tissue collagenase associated with ovulation in the rat   总被引:2,自引:0,他引:2  
A method has been developed to assay collagenase in ovarian extracts in the presence of tissue inhibitors. Rat ovarian tissue is first extracted with Triton X-100 and then heated to 60 degrees C in 50 mM Tris buffer containing 100 mM CaCl2. This extract contains collagenase activity and putative inhibitor(s). The inhibitory activity is removed by reduction with dithiothreitol and alkylation with iodoacetamide. Collagenase is then activated with aminophenylmercuric acetate and assayed using 3H-acetylated collagen from which the telopeptides have been removed. Identification of this activity as collagenase was performed by using the metalloprotease inhibitors EDTA and o-phenanthroline and by demonstration of the typical collagen cleavage fragments on sodium dodecyl sulfate-gel electrophoresis. To investigate the changes in collagenase activity associated with ovulation, immature rats received 20 IU of pregnant mare's serum gonadotropin and 52 h later 10 IU of human chorionic gonadotropin (hCG). After hCG administration, ovaries were removed at intervals from 0 to 20 h. Collagenase activity rose from 4.9 +/- 1.4% digestion of the 3H-collagen at 0 time to a maximum of 24.7 +/- 1.5% digestion at 8 h after hCG and remained high at 12 h (time of ovulation) and up to 20 h (18.7 +/- 1.9% and 16.1 +/- 1.6% digestion, respectively). These findings support a role of collagenase in the rupture of the follicle and they suggest a further role for this enzyme in the events following ovulation.  相似文献   

3.
The plasminogen activator/plasmin synthetic substrate S-2251 was used to measure the effect of indomethacin, cycloheximide, colchicine, dexamethasone, tranexamic acid, and aprotinin on the elevation of ovarian plasminogen activator (PA) that normally occurs during ovulation in the rat. Young Wistar rats were weaned on the morning of Day 21, given 4.0 IU of pregnant mare's serum gonadotropin (PMSG) s.c. at 0800 h on Day 22, and given 10.0 IU of human chorionic gonadotropin (hCG) on Day 24. These animals normally began ovulating between 0000 and 0200 h on Day 25. The induced ovulation rate was 11.5 +/- 2.2 ova/rat, based on the number of ova in the oviducts of control animals at 0900 h on Day 25. In the controls, PA activity in extracts of homogenized ovaries increased 3-fold from 0.125 +/- 0.010 OD units just before the administration of hCG to 0.371 +/- 0.021 at 12 h after hCG, i.e., near the time of ovulation. Indomethacin, in doses of 0.1-1.0 mg/rat, inhibited ovulation but did not inhibit the normal increase in PA activity, whereas indomethacin at the high dose of 10.0 mg/rat inhibited both ovulation and PA activity. Cycloheximide, at a dose of 0.1 mg/rat, was given at 12 h before hCG, immediately after hCG, and at 9 h after hCG. This agent inhibited ovulation most effectively when given at 12 h before hCG, yet it inhibited PA activity most effectively when given immediately after or at 9 h after hCG. Colchicine, at a dose of 0.1 mg/rat, inhibited ovulation, but not PA activity, when it was given 1 h before hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The involvement of androgens in the control of ovulation has been assessed by administration of the androgen antagonist, hydroxyflutamide, to prepubertal rats treated with pregnant mare's serum gonadotropin (PMSG) to induce first estrus and ovulation. Without human chorionic gonadotropin (hCG) injection, only 46% of rats that received six 5-mg, s.c. injections of hydroxyflutamide at 12-h intervals, beginning an hour before s.c. injection of 4 IU PMSG on Day-2 (Day 0 = the day of proestrus), had ovulated a mean of 1.3 +/- 0.4 oocytes per rat when killed on the morning of Day 1, whereas 92% of sesame oil-treated controls had ovulated a mean of 6.9 +/- 0.6 oocytes. After i.p. injection of hCG at 1600 h on Day 0, 92% of hydroxyflutamide-treated rats ovulated a mean of 8.3 +/- 1.2 oocytes compared to 100% of controls, which ovulated 7.3 +/- 0.4 oocytes per rat: these groups were not significantly different from each other, nor from control rats that received no hCG. Thus, exogenous hCG completely overcame the inhibitory effect of hydroxyflutamide on ovulation. Rats treated with PMSG and hydroxyflutamide without hCG were killed either on the morning of Day 0 to determine serum and ovarian steroid levels or on the afternoon of Day 0 to determine serum LH levels. Serum levels of estradiol-17 beta and testosterone in hydroxyflutamide-treated rats were significantly higher (178% and 75%, respectively; p less than 0.01) than levels observed in controls on the morning of Day 0. Ovarian concentrations of the steroids were also elevated in hydroxyflutamide-treated rats (p less than 0.01 for testosterone only).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gelatinase and proteoglycanase are metalloproteinases that govern extracellular matrix remodeling. In the present study, immature rats were primed with eCG (20 IU) and hCG (10 IU). Ovarian gelatinase and proteoglycanase activity were determined at the time of hCG administration (0 h) as well as 4, 8, and 12 h later. Gelatinase and proteoglycanase were extracted by homogenization in Triton and by heating (i.e., heat extraction). An aliquot of the heat extract was reduced and alkylated to destroy metalloproteinase inhibitors. Heat extracts not reduced and alkylated showed low levels of gelatinase and proteoglycanase activity that did not change at the different time points. However, with reduction and alkylation, gelatinolysis increased approximately 4-fold (p less than 0.05) at 4 h, 8 h, and 12 h after hCG priming. Proteoglycanase activity increased approximately 2-fold (p less than 0.05) between 0 and 8 h and declined at 12 h after hCG. The ovarian gelatinolytic activity was due to a metalloproteinase as demonstrated by the inhibition of enzyme activity by phenanthroline and EDTA (97.1 +/- 0.7% and 97.4 +/- 0.6% inhibition respectively). Proteoglycanase activity was not inhibited by phenanthroline (11.5 +/- 3.5%), suggesting that the enzyme activity was not specifically a metal-dependent enzyme. Gelatin gel zymography of the ovarian extracts demonstrated four predominant and distinct gelatin-degrading enzymes of 78, 72, 66, and 62 kDa, similar to the size of gelatinase. The present findings demonstrate a periovulatory increase in ovarian gelatinolytic and proteglycanase activity that may play a pivotal role in connective tissue remodeling associated with ovulation.  相似文献   

7.
8.
Administration of human chorionic gonadotropin (hCG) to pregnant mare's serum gonadotropin--hCG primed rats results in the loss of in vitro responsiveness of the ovaries to exogenous gonadotropins for progesterone production. This state is associated with a loss of membrane receptors for hCG and a concomitant increase in lipoprotein receptors. Although lipoproteins potentiated gonadotropin response in ovaries from saline-injected rats, no stimulation was observed in hCG-desensitized ovarian cells. Examination of the time course for the loss of lipoprotein response after hCG injection revealed that injection with 50 IU of hCG results in a loss of gonadotropin response as early as 1 h after injection, but exogenous cholesterol-carrying lipoprotein fractions, LDL and HDL, were capable of stimulating progesterone production up to 4 h after hormone injection. Measurement of endogenous cholesteryl ester content showed that there was a 72% decline during this period with a concomitant increase in the basal progesterone production. One hour after hCG injection there was no stimulation of steroidogenesis by hCG in the presence or absence of exogenous lipoproteins. The refractoriness to exogenous hCG appeared only 4 h later when the hCG dose was reduced to 10 IU, whereas with 25 IU of hCG, the effect was similar to that observed using 50 IU of hCG. Such diverse steroidogenic stimuli as hCG, LH, LDL, cAMP, and cholera enterotoxin failed to stimulate progesterone synthesis in vitro in luteal cells of rats injected with 50 IU of hCG 48 h prior to sacrifice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
The present study was designed to examine mechanism(s) of the anti-ovulatory action of the anti-androgen, hydroxyflutamide (OH-F). Prepubertal rats were treated with 4 IU pregnant mare's serum gonadotropin (PMSG) (day -2) to induce first estrus and ovulation. They received OH-F in sesame oil or oil alone at 08:00 and 20:00 h on day 0 (the day of proestrus) and ovulations were assessed on the morning of day 1. Eighty-three percent of control animals ovulated with a mean of 7.7 +/- 1.1 corpora lutea per rat. Hydroxyflutamide blocked ovulation in all but 2 of the 12 rats receiving this drug alone. All of OH-F treated rats that received 5 and 25 IU human chorionic gonadotropin (hCG) ovulated with means +/- SEM of 9.1 +/- 0.1 and 7.3 +/- 1.4 corpora lutea per rat, respectively. The dose of 0.2 IU hCG was essentially ineffective, while the effect of 1.0 IU hCG was intermediate. At the dose of 20 ng and above (100 and 500 ng) luteining hormone-releasing hormone (LHRH) completely overcame the ovulation blockade in the OH-F treated animals, while a 4-ng dose was ineffective. At 18:00 h on the day of proestrus, serum LH levels in control animals were 17.56 +/- 2.60 ng/mL, which were 920% above basal levels (1.90 +/- 0.13) indicating a spontaneous LH surge. This surge was suppressed in OH-F treated rats. Injection of LHRH, at the dose of 20 ng and above, reinstated the LH release in OH-F treated animals. Thus, the anti-androgen, OH-F, inhibits ovulation in PMSG-treated immature rats through its interference with the preovulatory LH surge; the inhibition can be reversed by hCG or LHRH. Hydroxyflutamide does not appear to interfere at the level of the pituitary, but may have direct action at the hypothalamic and (or) extrahypothalamic sites involved in the generation of positive feedback signals that control LH release.  相似文献   

11.
Kallikrein and plasminogen activator (PA) are serine proteases that have been implicated in the ovulatory process. Epostane and indomethacin are anti-ovulatory agents that inhibit steroid and eicosanoid synthesis, respectively. This study examines the effects of these two anti-ovulatory agents on ovarian kallikrein and PA activities during ovulation. The proteases were assayed by their actions on chromogenic peptide substrates S-2266 and S-2251, respectively. The ovulatory process was induced in 25-day-old Wistar rats by giving them hCG (10 IU, s.c.) 2 days after the animals had been primed with eCG (10 IU, s.c.). Control animals ovulated approximately 60-70 ova/rat, with the first ova appearing in the oviducts at 10-12 h after hCG administration, and this was the same time ovarian kallikrein and PA activities reached a peak. When doses of epostane ranging from 0.1-5.0 mg/rat or doses of indomethacin ranging from 0.03 to 3.16 mg/rat were administered s.c. at 3 h after hCG, the two drugs inhibited ovulation and ovarian kallikrein and PA activities in a dose-dependent manner. However, the anti-ovulatory action of the two drugs was more closely correlated with suppression of kallikrein activity than with PA activity. Treatment of the animals with exogenous progesterone reversed the inhibitory action of epostane, but not of indomethacin. The results suggest that the increase in ovarian progesterone at the time of ovulation may influence ovarian kallikrein and PA activities.  相似文献   

12.
The present work aimed to identify the best doses of human chorionic gonadotropin (hCG) needed to induce oocyte maturation of Micropogonias furnieri and to characterize ovarian dynamics during the periovulatory period. Adult M. furnieri females with fully developed ovaries were injected intraperitoneally with four different doses of hCG. The gonadotropin response was succeeded by analyzing morphologically gonadal biopsies and following the postinjection changes in follicle diameter. Oocyte maturation was induced by three doses used: 100, 300, and 500 IU of hCG kg bw-1, and was reached 48 h after treatment with 300 and 500 IU of hCG kg bw-1, and 72 h after treatment with 100 IU of hCG kg bw-1. Concerning ovarian dynamics, only 100 and 300 IU of hCG kg bw-1 mimicked the natural ones which have a synchronic group maturation. In conclusion, the dose mimicking natural ovarian dynamics and inducing oocyte maturation more quickly is 300 IU of hCG kg bw-1.  相似文献   

13.
Prolonged stimulation by human chorionic gonadotropin (hCG) induces ovarian follicular cysts in progesterone-synchronized immature rats [Bogovich, Endocrinology 1989; 124:1646-1653]. To determine if unabated stimulation by hCG has a similar effect on follicular development in adult ovaries, pregnant rats were given either 0 (control), 1, or 3 IU hCG twice daily for 9 days beginning on Day 13 of pregnancy. By Day 22 of pregnancy, rats treated with 1 IU hCG possessed large antral follicles at least 1 mm in diameter: approximately 33% larger than the diameters of preovulatory follicles observed in control rats (0 IU hCG). In contrast, rats treated with 3 IU hCG displayed ovarian follicular cysts up to 5 mm in diameter, with well-developed thecae and just a remnant of granulosa cells. Progesterone, androstenedione, and estradiol accumulation was greater in follicular incubates from hCG-treated rats than in incubates from control rats. Progesterone increased in response to cAMP in incubates from all treatment groups on all days tested. Androstenedione increased in response to cAMP on Day 22 of pregnancy for follicles from control animals, on all days tested for follicles from rats treated with 1 IU hCG, and on Days 15-19 for follicles from rats treated with 3 IU hCG. Androstenedione production in the presence of 300 ng of exogenous testosterone was significantly greater in follicular incubates from animals treated with 1 and 3 IU hCG than incubates from control animals on Days 19-22 of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hexachlorobenzene (HCB) is a persistent environmental contaminant which has been measured in human serum, fat, semen, and follicular fluid. In animal testing HCB has been shown to be a reproductive toxin. Discrepant results were obtained from prior studies concerning the effect of HCB treatment on ovarian steroidogenesis. The current study was designed to assess the impact of HCB on the ovary and gonadal steroid levels in the superovulated rat. Female Sprague-Dawley rats (n = 24) were dosed with HCB (0.0, 1.0, 10.0, or 100.0 mg/kg BW/day) for 21 days. All rats received 10 IU pregnant mare serum gonadotropin (PMSG) s.c. on day 18 of treatment and 15 IU of human chorionic gonadotropin (hCG) on day 20. A terminal blood sample was collected and circulating levels of estradiol (E2) and progesterone. (P4) were determined. Serum concentrations of P4 were significantly (p less than 0.0034) elevated by HCB treatment at all dose levels. Ovarian weights were significantly increased (p less than 0.05) in the lowest dose group only compared to the control group. Serum concentrations of E2, uterine weight, weight gain, and general animal health were not affected by HCB treatment. We conclude that during HCB treatment the rat ovary remains responsive to gonadotropin stimulation. Moreover, it is suggested that HCB effects on ovarian steroidogenesis are indirect.  相似文献   

15.
Two types of plasminogen activator (tissue-type, tPA; urokinase-type, uPA) have been demonstrated in ovarian granulosa cells, but only tPA activity was found in denuded oocytes. Immature rats were treated subcutaneously with 20 IU pregnant mare's serum gonadotropin (PMSG) to stimulate follicle maturation, followed 2 days later by an injection of 10 IU human chorionic gonadotropin (hCG) to induce ovulation. Cellular plasminogen activator activities were determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by a fibrin-overlay technique. Cumulus-oocyte complexes from rats before and after PMSG treatment contained low amounts of tPA, but not uPA, activity. After hCG treatment, tPA activity showed a time-dependent increase, reaching a maximum at 24 h after injection. At 12 and 24 h after hCG treatment, uPA activity was also detected. The appearance of high molecular weight lysis zones further suggested the formation of plasminogen activator-inhibitor complexes. Morphological analysis indicated that the increases in oocyte tPA activity were correlated with the extent of cumulus cell expansion and dispersion. In denuded oocytes, tPA activity also progressively increased during the periovulatory period to a maximum at 24 h after hCG treatment. In contrast, neither uPA activity nor activator-inhibitor complex was detected. Secretion of the proteases was measured in the conditioned media of cumulus-oocyte complexes cultured for 24 h in vitro. Substantial increases in tPA release were found in complexes obtained at 8 and 12 h after hCG injection, with lower secretion from complexes obtained at 24 h after hCG treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To assess the role of inhibitors of proteolytic enzymes, such as plasminogen activator (PA) and collagenase in the ovulatory process, inhibitor activity and mRNA levels were examined in periovulatory rat and human ovaries. In the rat, immature animals received 20 IU of pregnant mare serum gonadotropin (PMSG) followed 52 h later by 10 IU of hCG. Ovaries were removed at intervals from 0 to 20 h after human chorionic gonadotropin (hCG) administration. Inhibitor activity for metalloproteinases, such as collagenase, increased from 60.5 +/- 4.1 inhibitor units/ovary at 0 h (i.e., time of hCG treatment) to a maximum of 218.2 +/- 11.4 units/ovary at 8 h after hCG before decreasing at 12 h (time of ovulation) and 20 h (122.2 +/- 7.9 and 71.6 +/- 8.1 units/ovary, respectively). Human follicular fluid and granulosa cells were obtained from preovulatory follicles of patients in our in vitro fertilization program. Metalloproteinase inhibitor activity was evaluated in follicular fluid as well as the levels of PA and PA inhibitor (PAI) mRNA by Northern analysis. Increasing metalloproteinase inhibitor activity was positively correlated with follicular levels of estradiol (p less than 0.001) and progesterone (p less than 0.02, N = 26). Chromatographic separation of follicular fluid resulted in two peaks of metalloproteinase inhibitor activity. The large molecular weight (MW) inhibitor had an approximate size of 700 kilodaltons (kDa) and may represent alpha 2-macroglobulin, a serum-derived inhibitor. The small MW inhibitor shared many of the characteristics of tissue-derived inhibitors of metalloproteinases. Partial purification of the small MW inhibitor by Concanavalin A-Sepharose and Heparin-Sepharose chromatography demonstrated the inhibitor to be a glycoprotein with an approximate MW = 28-29 K. Northern analysis of human granulosa cell total RNA from preovulatory follicles showed little or no detectable tissue-type PA or urokinase-type PA mRNA. In contrast, two species of PA inhibitor type-1 mRNA were detected in relative abundance. The present findings demonstrate the presence of proteolytic inhibitors in periovulatory ovaries of the rat and human. These ovarian inhibitors may play a role in regulating connective tissue remodeling during follicular rupture.  相似文献   

17.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

18.
19.
Effects of the neutralization of endogenous progesterone with rabbit antiserum to progesterone (anti-progesterone) on germinal vesicle breakdown of ova in follicles of small (less than 125 micrometers), intermediate (125-250 micrometers) and large (greater than 250 micrometers) diameter were examined by a quantitative histological technique. Immature rats were treated with 5 IU pregnant mare's serum gonadotropin (PMS) then with 10 IU human chorionic gonadotropin (hCG). Administration of anti-progesterone together with hCG 6 h later significantly decreased the incidence of germinal vesicle breakdown of ova in the large follicles, but not in the intermediate ones. This treatment did not affect the proportion of intermediate to large follicles in the population. Replacement with progesterone 1 h after the simultaneous injection of hCG and anti-progesterone partly reversed the reduced incidence of meiosis. An injection of rabbit antiserum to estrone, in addition to the replacement with progesterone 1 h after the simultaneous injections of hCG and anti-progesterone, restored the incidence of meiosis to a value comparable to the values found for control rats treated sequentially with PMS and hCG. We concluded that the hCG-induced preovulatory rise in progesterone has a limited but definite stimulatory effect on the resumption of meiosis in the ova of large follicles and that it mediates the meiosis-inducing action of hCG.  相似文献   

20.
Previous studies have demonstrated the involvement of eicosanoids (prostaglandins and hydroxyperoxides, including leukotrienes) in ovulation in several mammalian species. In this study, the role played by eicosanoids in the vascular changes that occur in the immediate preovulatory period after human chorionic gonadotropin (hCG) stimulation was examined in the rat. Changes in the ovarian uptake of two iodinated proteins were examined 30 minutes after i.v. injection of 125I-bovine serum albumin (BSA, Mr = 68,000) and 125I-alpha 2-macroglobulin (alpha 2M, Mr = 750,000). Uptake was measured during 30 min, 0, 3, 6, and 9 h after induction of ovulation by an i.p. injection of human chorionic gonadotropin (hCG, 10 IU). hCG enhanced the uptake of both iodinated proteins, with peak uptake values at 6 and 9 h. Intra-bursal injections of an ovulation inhibiting dose (0.5 mg/bursa) of indomethacin-a cycooxygenase inhibitor-and nordihydroguaiaretic acid (NDGA), esculetin, or caffeic acid--inhibitors of lipoxygenase--concomitantly with hCG attenuated the action of the hormone on 125I-BSA uptake. Indomethacin and esculetin were without effect on the uptake of alpha 2M. Ovarian and follicular blood flow was measured using 113Sn-microspheres. hCG increased ovarian and follicular blood flow with the most pronounced effect at the early time of 1.5 h. Indomethacin and NDGA did not attenuate this action of hCG. Accordingly, ovarian vascular resistance was reduced by hCG at 1.5, 6, and 9 h post-hCG, respectively, and indomethacin and NDGA had no significant effects. We suggest that one way in which eicosanoids are involved in follicular rupture is by their modulation of vascular permeability as revealed by uptake of the protein marker albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号