首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expression construct containing the cDNA encoding a modified aequorea green fluorescent protein (GFP) ligated to the 5'-end of the rat androgen receptor (AR) cDNA (GFP-AR) was used to study the intracellular dynamics of the receptor movement in living cells. In three different cell lines, ie. PC3, HeLa, and COS1, unliganded GFP-AR was seen mostly in the cytoplasm and rapidly (within 15-60 min) moved to the nuclear compartment after androgen treatment. Upon androgen withdrawal, the labeled AR migrated back to the cytoplasmic compartment and maintained its ability to reenter the nucleus on subsequent exposure to androgen. Under the condition of inhibited protein synthesis by cycloheximide (50 microg/ml), at least four rounds of receptor recycling after androgen treatment and withdrawal were recorded. Two nonandrogenic hormones, 17beta-estradiol and progesterone at higher concentrations (10(-7)/10(-6) M), were able to both transactivate the AR-responsive promoter and translocate the GFP-AR into the nucleus. Similarly, antiandrogenic ligands, cyproterone acetate and casodex, were also capable of translocating the cytoplasmic AR into the nucleus albeit at a slower rate than the androgen 5alpha-dihydrotestosterone (DHT). All AR ligands with transactivation potential, including the mixed agonist/antagonist cyproterone acetate, caused translocation of the GFP-AR into a subnuclear compartment indicated by its punctate intranuclear distribution. However, translocation caused by casodex, a pure antagonist, resulted in a homogeneous nuclear distribution. Subsequent exposure of the casodex-treated cell to DHT rapidly (15-30 min) altered the homogeneous to punctate distribution of the already translocated nuclear AR. When transported into the nucleus either by casodex or by DHT, GFP-AR was resistant to 2 M NaCl extraction, indicating that the homogeneously distributed AR is also associated with the nuclear matrix. Taken together, these results demonstrate that AR requires ligand activation for its nuclear translocation where occupancy by only agonists and partial agonists can direct it to a potentially functional subnuclear location and that one receptor molecule can undertake multiple rounds of hormonal signaling; this indicates that ligand dissociation/inactivation rather than receptor degradation may play a critical role in terminating hormone action.  相似文献   

2.
Androgen signaling, mediated by the androgen receptor (AR), is a critical factor influencing growth of normal and malignant breast cells. Given the increasing use of exogenous androgens in women, a better understanding of androgen action in the breast is essential. This study compared the effects of 5alpha-dihydrotestosterone (DHT) and a synthetic androgen, mibolerone, on estradiol (E(2))-induced proliferation of breast cancer cells. DHT modestly inhibited E(2)-induced proliferation and mibolerone significantly inhibited proliferation in T-47D cells. The effects of both androgens could be reversed by an AR antagonist, suggesting that their actions were mediated, in part, by AR. Whereas high physiological doses (10-100nM) of DHT reduced E(2)-mediated induction of the estrogen-regulated gene progesterone receptor (PR) to basal levels, mibolerone at lower doses (1nM) eliminated PR expression, suggesting that mibolerone may also act via the PR. In the AR positive, PR-negative MCF-7 cells, mibolerone had modest effects on E(2)-induced proliferation, but was a potent inhibitor of proliferation in the AR positive, PR positive MCF-7M11 PRA cells. The effects of mibolerone in breast cancer cells were similar to those of the progestin, medroxyprogesterone acetate. Our results demonstrate that mibolerone can have both androgenic and progestagenic actions in breast cancer cells.  相似文献   

3.
We treated pregnant guinea pigs on Day 50 of gestation with 10 mg testosterone propionate (TP), obtaining fetuses 2, 4, 8, or 18 h later as well as after 5 days of treatment. In a second group of pregnant guinea pigs, dihydrotestosterone propionate (DHTP), estradiol benzoate (E2B), progesterone (P), or cortisol was given 2 h before obtaining fetuses. Although TP treatment elevated fetal serum T (p less than 0.05), brain cytosolic androgen receptor (ARc) content was unchanged in fetuses of either sex. In female fetuses, nuclear androgen receptors (ARn) increased 10-fold in medial-basal hypothalamus (MBH) and preoptic area (POA) at 2 and 4 h (respectively) after treatment, while fetal male ARn content was unchanged. Maternal injection of other steroids (E2B, P, or cortisol, but not DHTP) significantly increased these hormones in the fetus 2 h later (p less than 0.05). Only androgens affected fetal androgen receptor (AR) content. While TP increased ARn in female MBH, DHTP decreased ARc in fetal anterior pituitary of both sexes. In this latter case, a metabolite of DHT may mediate the effects. We conclude that T crosses the guinea pig placenta and activates ARn in POA and MBH of female fetuses; male ARn appear to be maximally occupied by endogenous T. Steroids of other classes do not induce AR responses in fetal guinea pig brain. These AR changes may represent an initial cellular mechanism in brain sexual differentiation.  相似文献   

4.

Background

Prostate cancer (CaP) is the second leading cause of cancer death in American men. Androgen deprivation therapy is initially effective in CaP treatment, but CaP recurs despite castrate levels of circulating androgen. Continued expression of the androgen receptor (AR) and its ligands has been linked to castration-recurrent CaP growth.

Principal Finding

In this report, the ligand-dependent dominant-negative ARΔ142–337 (ARΔTR) was expressed in castration-recurrent CWR-R1 cell and tumor models to elucidate the role of AR signaling. Expression of ARΔTR decreased CWR-R1 tumor growth in the presence and absence of exogenous testosterone (T) and improved survival in the presence of exogenous T. There was evidence for negative selection of ARΔTR transgene in T-treated mice. Mass spectrometry revealed castration-recurrent CaP dihydrotestosterone (DHT) levels sufficient to activate AR and ARΔTR. In the absence of exogenous testosterone, CWR-R1-ARΔTR and control cells exhibited altered androgen profiles that implicated epithelial CaP cells as a source of intratumoral AR ligands.

Conclusion

The study provides in vivo evidence that activation of AR signaling by intratumoral AR ligands is required for castration-recurrent CaP growth and that epithelial CaP cells produce sufficient active androgens for CaP recurrence during androgen deprivation therapy. Targeting intracrine T and DHT synthesis should provide a mechanism to inhibit AR and growth of castration-recurrent CaP.  相似文献   

5.
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease. Prior studies suggest that androgens affect Alzheimer's disease risk by regulating accumulation of β-amyloid protein (Aβ) by an undefined mechanism. In this study, we investigated the role of the Aβ-catabolizing enzyme neprilysin (NEP) in this process. First, we observed that androgens positively regulate neural expression of NEP in adult male rats. Next, we investigated androgen regulatory effects on both NEP expression and Aβ levels using cultured hippocampal neurons and neuronally differentiated rat pheochromocytoma cell 12 with or without androgen receptor (AR). Dihydrotestosterone (DHT) induced a time-dependent increase in NEP expression. DHT also significantly decreased levels of Aβ in AR-expressing cells transfected with amyloid precursor protein, but did not affect levels of either full-length or non-amyloidogenic, soluble amyloid precursor protein. Importantly, the DHT induced decrease of Aβ was blocked by pharmacological inhibition of NEP. The DHT-mediated increase in NEP expression and decrease in Aβ levels were (i) not observed in rat pheochromocytoma cell 12 lacking AR and (ii) blocked in AR-expressing cells by the antagonists, cyproterone acetate and flutamide. Together, these findings suggest that androgen regulation of Aβ involves an AR-dependent mechanism requiring up-regulation of the Aβ catabolizing enzyme NEP.  相似文献   

6.
In this study, we demonstrated that ADP-induced platelet aggregation activates the binding of testosterone (T) to its receptor. It is well known that binding of ADP to its receptors induced the release of Ca2+ ions from dense bodies into the cytosol of platelets. In this work, we compared the binding of testosterone or dihydrotestosterone to their receptors using cytosol obtained from ADP-treated and non-treated platelets. These experiments were repeated using EGTA (a calcium chelator) or U73122 (a phospholipase C enzymatic activity inhibitor) to the ADP-treated platelets. In addition, we also developed a competition analysis for the androgen receptors (AR) using [3H]DHT, non-radioactive T, DHT or cyproterone acetate from ADP-treated platelets cytosol. The results from this study indicate that the cytosol obtained from non-ADP-treated platelets did not show any binding to [3H]T or [3H]DHT, whereas cytosol from ADP-treated platelets binds to the radio-labeled androgens. Furthermore cytosol from ADP plus U73122-treated platelets did not show binding to [3H]T or [3H]DHT. These data suggest that intracellular Ca2+ ions stimulates the binding of androgens to their receptors in platelets cytosol. The competition analysis shows that T and DHT have high affinities for the androgen receptors with similar IC50 values, whereas cyproterone acetate shows a lower affinity. The results from these data clearly indicate the presence of androgen receptors in platelets.  相似文献   

7.
In rhesus monkeys sexual differentiation of the brain and reproductive tract (RT) is androgen-dependent. Presumably these effects are mediated through the androgen receptor (AR). The AR has not been characterized in fetal tissues such as liver, kidney, heart, spinal cord and RT in this species. We characterized AR binding using [3H]R1881 as the ligand in cytosols from tissues obtained on days 100-138 of gestation. Scatchard analyses revealed a single, saturable, high affinity AR in liver, kidney, heart, spinal cord and RT. The apparent dissociation constant (Kd) ranged from 0.52 to 0.85 nM with no significant tissue differences. The number of AR (Bmax; fmol/mg protein) differed significantly (P less than 0.01) between tissues (liver greater than RT much greater than kidney greater than or equal to heart greater than or equal to spinal cord). Radioinert testosterone (T) and 5 alpha-dihydrotestosterone (DHT) but not androstenedione, progesterone, estradiol-17 beta, estrone or cortisol in a 50-fold molar excess inhibited [3H]R1881 binding to the AR in spinal cord, heart, kidney and RT. However, in liver only DHT competed significantly (P less than 0.01) for binding. This difference in binding of DHT vs T in the liver was further investigated by incubating liver and kidney cytosols with [3H]DHT and [3H]T at 4 degrees C. We identified the metabolic products by mobility on Sephadex LH-20 columns and reverse isotope dilution. Liver cytosols metabolized [3H]DHT to 5 alpha-androstane- 3 alpha,17 beta-diol (5 alpha-diol) and [3H]T to 5 beta-androstane-3 alpha, 17 beta-diol (5 beta-diol) at 4 degrees C. In contrast, kidney cytosols metabolized [3H]DHT while [3H]T remained unchanged. Further studies indicated that a 50-fold molar excess of 5 alpha-diol inhibited the binding of [3H]R1881 in liver cytosols by about 50% whereas the same molar concentration of 5 beta-diol had no effect. These data demonstrate the presence of AR in peripheral tissues of fetal rhesus monkeys and suggest that androgens through their receptors may affect development of these tissues. Liver cytosols are capable of metabolizing T and DHT at 4 degrees C at conditions similar to those used for measuring cytosolic AR. However, T and DHT are metabolized differently, generating different isomers which have different affinities for hepatic AR.  相似文献   

8.
9.
Growing evidences support that androgen displays beneficial effects on cardiovascular functions although the mechanism of androgen actions remains to be elucidated. Modulation of endothelial cell growth and function is a potential mechanism of androgen actions. We demonstrated in the present study that androgens [dihydrotestosterone (DHT) and testosterone], but not 17β-estradiol, produced a time- and dose-dependent induction of cell proliferation in primary human aortic endothelial cells (HAECs) as evident by increases in viable cell number and DNA biosynthesis. Real-time qRT-PCR analysis showed that DHT induced androgen receptor (AR), cyclin A, cyclin D1, and vascular endothelial growth factor (VEGF) gene expression in a dose- and time-dependent manner. The addition of casodex, a specific AR antagonist, or transfection of a specific AR siRNA blocked DHT-induced cell proliferation and target gene expression, indicating that the DHT effects are mediated via AR. Moreover, coadministration of SU5416 to block VEGF receptors, or transfection of a specific VEGF-A siRNA to knockdown VEGF expression, produced a dose-dependent blockade of DHT induction of cell proliferation and cyclin A gene expression. Interestingly, roscovitine, a selective cyclin-dependent kinase inhibitor, also blocked the DHT stimulation of cell proliferation with a selective inhibition of DHT-induced VEGF-A expression. These results indicate that androgens acting on AR stimulate cell proliferation through upregulation of VEGF-A, cyclin A, and cyclin D1 in HAECs, which may be beneficial to cardiovascular functions since endothelial cell proliferation could assist the repair of endothelial injury/damage in cardiovascular system.  相似文献   

10.
This study was undertaken to investigate the prevalent hypothesis that androgens are responsible for the organ-specific down-regulation of penile androgen receptors (ARs) and decline of penile growth in the rat during sexual maturation. Sexually immature male rats (21 days old) were castrated and treated for 3 days (“short-term”), with high doses of: (a) testosterone and the -reductase inhibitor finasteride (T/F); (b) dihydrotestosterone (DHT); or (c) finasteride alone (F). Intact and castrate controls received vehicle only. PolyA + RNA was analysed by Northern blot hybridization and ARs were estimated in the penis and ventral prostates by (3-H)R-1881 binding in the cytosol. Short-term castration, with or without F, increased penile AR mRNA, whereas high doses of T/F and DHT reduced it considerably. Although penile cytosol AR concentration in the control castrates, with or without F, paralleled the AR mRNA rise, treatment with androgens left cytosol AR content per organ and AR concentration above those of the intact rat penis despite the drop in AR mRNA. A “long-term” treatment (10 days) on 19-day-old rats with either medium or high doses of T/F and DHT also failed to down-regulate penile cytosol ARs below the intact controls. Western blot analysis of penile cytosol AR levels confirmed these results. Block of pituitary FSH and LH release by a GnRH antagonist in castrates receiving T/F or DHT at high doses did not modify the response. In the case of intact rats, high doses of T/F or DHT actually increased penile cytosol AR content. No difference was observed between T/F and DHT effects. In contrast to what occurs during sexual maturation, the prostate ARs and growth rate responded to all treatments in a similar way to what was observed in the penis. Our results suggest that increases in serum T or DHT are not major factors in the physiological down-regulation of ARs and androgen-dependent growth in the rat corpora cavernosa.  相似文献   

11.
Steroid hormones induce rapid membrane receptor-mediated effects that appear to be separate from long-term genomic events. The membrane receptor-mediated effects of androgens on GT1-7 GnRH-secreting neurons were examined. We observed androgen binding activity with a cell-impermeable BSA-conjugated testosterone [testosterone 3-(O-carboxymethyl)oxime (T-3-BSA)] and were able to detect a 110-kDa protein recognized by the androgen receptor (AR) monoclonal MA1-150 antibody in the plasma membrane fraction of the GT1-7 cells by Western analysis. Further, a transfected green fluorescent protein-tagged AR translocates and colocalizes to the plasma membrane of the GT1-7 neuron. Treatment with 10 nM 5alpha-dihydrotestosterone (DHT) inhibits forskolin-stimulated accumulation of cAMP, through a pertussis toxin-sensitive G protein, but has no effect on basal cAMP levels. The inhibition of forskolin-stimulated cAMP accumulation by DHT was blocked by hydroxyflutamide, a specific inhibitor of the nuclear AR. DHT, testosterone (T), and T-3-BSA, all caused significant elevations in intracellular calcium concentrations ([Ca(2+)](i)). T-3-BSA stimulates GnRH secretion 2-fold in the GT1-7 neuron, as did DHT or T. Interestingly GnRH mRNA levels were down-regulated by DHT and T as has been reported, but not by treatment with T-3-BSA or testosterone 17beta-hemisuccinate BSA. These studies indicate that androgen can differentially regulate GnRH secretion and gene expression through specific membrane-mediated or nuclear mechanisms.  相似文献   

12.
CNNT. There was a good correlation between bioactivity and binding affinity to AR for the 7alpha-substituted androgens compared to T. In contrast, relative to their binding affinity to AR, the androgenic potency of DHT and 19-NT was lower compared to T. The reason for the lower in vivo androgenic activity of 19-NT is attributable to its enzymatic conversion to 5alpha-reduced-19-NT in the prostate. In the case of DHT, the lower bioactivity could be attributed to its faster metabolic clearance rate relative to T. The correlation was further investigated in vitro by co-transfection of rat ARcDNA expression plasmid and a reporter plasmid encoding the chloramphenicol acetyl transferase (CAT) gene driven by an androgen inducible promoter into CV-1 cells. All the androgens led to a dose-dependent increase in the CAT activity. MENT was found to be the most potent followed by DHT, 19-NT, T, and CNNT. The specificity of the androgenic response was confirmed by its inhibition with hydroxyflutamide, an antiandrogen. Thus, there was a good correlation between binding affinity and in vitro bioactivity in the transient transfection assay for the androgens. This suggests that the in vivo bioactivity of androgens could be influenced not only by binding affinity to receptors but also by factors such as absorption, binding to serum proteins and metabolism. However, the high potency of MENT is primarily related to its higher affinity to AR.  相似文献   

13.
14.
15.
The paper provides data of comparative assessment of activity of the key enzymes in metabolism of androgens in various morphological variants of sarcomas and benign bone tumors in 46 patients within the age range from 15 to 61, which were under treatment in the ORC named after N. N. Blokhin, RAMS, from 1996 to 1997. On the basis on publications and our own research results we can suggest that malignant human bone tumors of various histogenesis are subject to metabolic processes of testosterone (T), the principal androgen regulator in the bone tissue, as well as formation in bones of 5 alpha-dihydrotestosterone (DHT). One cannot exclude a possibility that metabolism of androgen in bone tissues is directed towards formation of other androgens (in addition to DHT), which may participate in the bone tissue regulation, for instance, 3 alpha- and 3 beta-diols; specific activity of the latter has recently been intensively scrutinized. One can expect that further research shall disclose the clinical significance of metabolism of androgens and of individual androgens in human bone formations.  相似文献   

16.
Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function.  相似文献   

17.
18.
Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3' UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues.  相似文献   

19.
20.
Sex hormone binding globulin (SHBG) is known to interfere in the quantitation of androgen receptors (AR) if dihydrotestosterone (DHT) is used. We used a monoclonal antibody to remove SHBG from cytosol. In cytosol of benign prostatic hyperplastic (BPH) tissue low capacity binding for DHT, but not for R1881, was found after removal of SHBG. AR were detected in 18 of 20 ovarian cancer cytosols. In the two AR-negative cases, non-saturable binding for DHT, testosterone and R1881 was observed. Incubation with anti-SHBG did not change this. An hitherto undefined androgen binding macromolecule(s), with high-capacity binding for natural and synthetic androgens, but not for estrogen and progesterone, seems to be present in these ovarian cancer tissues. The functionality of these androgen binding macromolecules in ovarian cancer is yet to be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号