首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain.  相似文献   

2.
Background: The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. The 10 class I synthetases are considered to have in common the catalytic domain structure based on the Rossmann fold, which is totally different from the class II catalytic domain structure. The class I synthetases are further divided into three subclasses, a, b and c, according to sequence homology. No conserved structural features for tRNA recognition by class I synthetases have been established. Results: We determined the crystal structure of the class Ia methionyl-tRNA synthetase (MetRS) at 2.0 A resolution, using MetRS from an extreme thermophile, Thermus thermophilus HB8. The T. thermophilus MetRS structure is in full agreement with the biochemical and genetic data from Escherichia coli MetRS. The conserved 'anticodon-binding' residues are spatially clustered on an alpha-helix-bundle domain. The Rossmann-fold and anticodon-binding domains are connected by a beta-alpha-alpha-beta-alpha topology ('SC fold') domain that contains the class I specific KMSKS motif. Conclusions: The alpha-helix-bundle domain identified in the MetRS structure is the signature of the class Ia enzymes, as it was also identified in the class Ia structures of the isoleucyl- and arginyl-tRNA synthetases. The beta-alpha-alpha-beta-alpha topology domain, which can now be identified in all known structures of the class Ia and Ib synthetases, is likely to dock with the inner side of the L-shaped tRNA, thereby positioning the anticodon stem.  相似文献   

3.
Aminoacyl-tRNA synthetases play a central role in maintaining accuracy during the translation of the genetic code. To achieve this challenging task they have to discriminate against amino acids that are very closely related not only in structure but also in chemical nature. A 'double-sieve' editing model was proposed in the late seventies to explain how two closely related amino acids may be discriminated. However, a clear understanding of this mechanism required structural information on synthetases that are faced with such a problem of amino acid discrimination. The first structural basis for the editing model came recently from the crystal structure of isoleucyl-tRNA synthetase, a class I synthetase, which has to discriminate against valine. The structure showed the presence of two catalytic sites in the same enzyme, one for activation, a coarse sieve which binds both isoleucine and valine, and another for editing, a fine sieve which binds only valine and rejects isoleucine. Another structure of the enzyme in complex with tRNA showed that the tRNA is responsible for the translocation of the misactivated amino-acid substrate from the catalytic site to the editing site. These studies were mainly focused on class I synthetases and the situation was not clear about how class II enzymes discriminate against similar amino acids. The recent structural and enzymatic studies on threonyl-tRNA synthetase, a class II enzyme, reveal how this challenging task is achieved by using a unique zinc ion in the active site as well as by employing a separate domain for specific editing activity. These studies led us to propose a model which emphasizes the mirror symmetrical approach of the two classes of enzymes and highlights that tRNA is the key player in the evolution of these class of enzymes.  相似文献   

4.
Okon M  Frank PG  Marcel YL  Cushley RJ 《FEBS letters》2002,518(1-3):139-143
Class I aminoacyl-tRNA synthetases have been thought to be single polypeptide enzymes. However, the complete genome sequence of a hyper thermophile Aquifex aeolicus suggests that the gene for leucyl-tRNA synthetases (LeuRS) is probably split into two pieces (leuS and leuS'). In this research, each gene was separately cloned and overexpressed in Escherichia coli and the protein products were examined for LeuRS activity. Leucylation activity was detected only when both gene products coexisted. Gel filtration analysis showed that the active form of A. aeolicus LeuRS has a heterodimeric (alpha/beta type) quaternary structure that is unique among class I aminoacyl-tRNA synthetases.  相似文献   

5.
The seven class 2 aminoacyl-tRNA synthetases that are α2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.  相似文献   

6.
Recent studies suggest that aminoacylation of tRNA may play an important role in the transport of these molecules from the nucleus to the cytoplasm. However, there is almost no information regarding the status of active aminoacyl-tRNA synthetases within the nuclei of eukaryotic cells. Here we show that at least 13 active aminoacyl-tRNA synthetases are present in purified nuclei of both Chinese hamster ovary and rabbit kidney cells, although their steady-state levels represent only a small percentage of those found in the cytoplasm. Most interestingly, all the nuclear aminoacyl-tRNA synthetases examined can be isolated as part of a multienzyme complex that is more stable, and consequently larger, than the comparable complex isolated from the cytoplasm. These data directly demonstrate the presence of active aminoacyl-tRNA synthetases in mammalian cell nuclei. Moreover, their unexpected structural organization raises important questions about the functional significance of these multienzyme complexes and whether they might play a more direct role in nuclear to cytoplasmic transport of tRNAs.  相似文献   

7.
The aminoacyl-tRNA synthetases arose early in evolution and established the rules of the genetic code through their specific interactions with amino acids and RNA molecules. About half of these tRNA charging enzymes are class I synthetases, which contain similar N-terminal nucleotide-fold-like structures that are joined to variable domains implicated in specific protein-tRNA contacts. Here, we show that a bacterial synthetase gene can be split into two nonoverlapping segments. We split the gene for Escherichia coli methionyl-tRNA synthetase (a class I synthetase) at several sites near the interdomain junction, such that one segment codes for the nucleotide-fold-containing domain and the other provides determinants for tRNA recognition. When the segments are folded together, they can recognize and charge tRNA, both in vivo and in vitro. We postulate that an early step in the assembly of systems to attach amino acids to specific RNA molecules may have involved specific interactions between discrete proteins that is reflected in the interdomain contacts of modern synthetases.  相似文献   

8.
The aminoacyl-tRNA synthetases exist as two enzyme families which were apparently generated by divergent evolution from two primordial synthetases. The two classes of enzymes exhibit intriguing familial relationships, in that they are distributed nonrandomly within the codon-amino acid matrix of the genetic code. For example, all XCX codons code for amino acids handled by class II synthetases, and all but one of the XUX codons code for amino acids handled by class I synthetases. One interpretation of these patterns is that the synthetases coevolved with the genetic code. The more likely explanation, however, is that the synthetases evolved in the context of an already-established genetic code—a code which developed earlier in an RNA world. The rules which governed the development of the genetic code, and led to certain patterns in the coding catalog between codons and amino acids, would also have governed the subsequent evolution of the synthetases in the context of a fixed code, leading to patterns in synthetase distribution such as those observed. These rules are (1) conservative evolution of amino acid and adapter binding sites and (2) minimization of the disruptive effects on protein structure caused by codon meaning changes.  相似文献   

9.
Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase.  相似文献   

10.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

11.
Leucyl-, isoleucyl- and valyl-tRNA synthetases are closely related large monomeric class I synthetases. Each contains a homologous insertion domain of approximately 200 residues, which is thought to permit them to hydrolyse ('edit') cognate tRNA that has been mischarged with a chemically similar but non-cognate amino acid. We describe the first crystal structure of a leucyl-tRNA synthetase, from the hyperthermophile Thermus thermophilus, at 2.0 A resolution. The overall architecture is similar to that of isoleucyl-tRNA synthetase, except that the putative editing domain is inserted at a different position in the primary structure. This feature is unique to prokaryote-like leucyl-tRNA synthetases, as is the presence of a novel additional flexibly inserted domain. Comparison of native enzyme and complexes with leucine and a leucyl- adenylate analogue shows that binding of the adenosine moiety of leucyl-adenylate causes significant conformational changes in the active site required for amino acid activation and tight binding of the adenylate. These changes are propagated to more distant regions of the enzyme, leading to a significantly more ordered structure ready for the subsequent aminoacylation and/or editing steps.  相似文献   

12.
《FEBS letters》2014,588(23):4478-4486
The class II lysyl-tRNA synthetases (KRS) are conserved aminoacyl-tRNA synthetases that attach lysine to the cognate tRNA in a two-step mechanism. The enzyme from the parasitic protozoan Entamoeba histolytica was crystallized in the presence of small ligands to generate snapshots of the lysine-adenylate formation. The residues involved in lysine activation are highly conserved and the active site closes around the lysyl-adenylate, as observed in bacterial KRS. The Entamoeba EMAPII-like polypeptide is not resolved in the crystals, but another Entamoeba-specific insertion could be modeled as a small helix bundle that may contribute to tRNA binding through interaction with the tRNA hinge.  相似文献   

13.
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre- and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-tRNAPro variant, respectively. Residues critical for the editing activity (Asp-350 and Lys-279) are found in a novel insertion domain (INS) positioned between motifs 2 and 3 of the class defining aminoacylation active site. In this work, we present further evidence that INS is responsible for editing in ProRS. We deleted the INS from wild-type E. coli ProRS to yield DeltaINS-ProRS. While DeltaINS-ProRS was still capable of misactivating alanine, the truncated construct was defective in hydrolyzing non-cognate Ala-AMP. When the INS domain was cloned and expressed as an independent protein, it was capable of deacylating a mischarged Ala-microhelixPro variant. Similar to full-length ProRS, post-transfer editing was abolished in a K279A mutant INS. We also show that YbaK, a protein of unknown function from Haemophilus influenzae with high sequence homology to the prokaryotic INS domain, was capable of deacylating Ala-tRNAPro and Ala-microhelixPro variants but not cognate Pro-tRNAPro. Thus, we demonstrate for the first time that an independently folded class II synthetase editing domain and a previously identified homolog can catalyze a hydrolytic editing reaction.  相似文献   

14.
The functional interaction of Arg-, Ile-, Leu-, Lys- and Met-tRNA synthetases occurring within the same rat liver multienzyme complex are investigated by examining the enzymes catalytic activities and inactivation kinetics. The Michaelis constants for amino acids, ATP and tRNAs of the dissociated aminoacyl-tRNA synthetases are not significantly different from those of the high-Mr multienzyme complex, except in a few cases where the Km values of the dissociated enzymes are higher than those of the high-Mr form. The maximal aminoacylation velocities of the individual aminoacyl-tRNA synthetases are not affected by the presence of simultaneous aminoacylation by another synthetase occurring within the same multienzyme complex. Site-specific oxidative modification by ascorbate and nonspecific thermal inactivation of synthetases in the purified rat liver 18 S synthetase complex are examined. Lys- and Arg-tRNA synthetases show remarkably parallel time-courses in both inactivation processes. Leu- and Met-tRNA synthetases also show parallel kinetics in thermal inactivation and possibly oxidative inactivation. Ile-tRNA synthetase shows little inactivation in either process. The oxidative inactivation of Lys- and Arg-tRNA synthetases can be reversed by addition of dithiothreitol. These results suggest that synthetases within the same high-Mr complex catalyze aminoacylation reactions independently; however, the stabilities of some of the synthetases in the multienzyme complex are coupled. In particular, the stability of Arg-tRNA synthetase depends appreciably on its association with fully active Lys-tRNA synthetase.  相似文献   

15.
Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.  相似文献   

16.
Aminoacyl-tRNA synthetases are validated molecular targets for anti-infective drug discovery because of their essentiality in protein synthesis. Thanks to genome sequencing, it is now possible to systematically study aminoacyl-tRNA synthetases from human eukaryotic parasites as putative targets for novel drug discovery. As part of a program targeting class IIb asparaginyl-tRNA synthetases (AsnRS) from the parasitic nematode Brugia malayi for anti-filarial drugs, we report the complete structure of a eukaryotic AsnRS. Metazoan and fungal AsnRS differ from their bacterial homologues by the addition of a conserved N-terminal extension of about 110 residues whose structure we have determined by solution NMR for the B. malayi enzyme. In addition, we solved by X-ray crystallography a series of structures of the catalytically active N-terminally truncated enzyme (residues 112-548), allowing the structural basis for the mechanism of asparagine activation to be elucidated. The N-terminal domain contains a structured region with a novel fold featuring a lysine-rich helix that is shown by NMR to interact with tRNA. This is connected by an unstructured tether to the remainder of the enzyme, which is highly similar to the known structure of bacterial AsnRS. These data enable a model of the complete AsnRS-tRNA complex to be constructed.  相似文献   

17.
Discrimination factors (D) which are characteristic for discrimination between lysine and 19 naturally occurring non-cognate amino acids have been determined from kcat and Km values for native and phosphorylated lysyl-tRNA synthetases from yeast. Generally, both species of this class II aminoacyl-tRNA synthetase are considerably less specific than the class I synthetases specific for isoleucine, valine, tyrosine, and arginine. D values of the native enzyme are in the range 90-1700, D values of the phosphorylated species in the range 40-770. The phosphorylated enzyme acts faster and less accurately. In aminoacylation of tRNALys-C-C-A(2'NH2) discrimination factors D1 vary over 30-980 for the native and over 8-300 for the phosphorylated enzyme. From AMP formation stoichiometry and D1 values pretransfer proof-reading factors (II1) of 1.1-56 were calculated for for the native enzyme, factors of 1.0-44 for the phosphorylated species. Post-transfer proof-reading factors (II2) were calculated from D values and AMP formation stoichiometry in acylation of tRNALys-C-C-A. Pretransfer proof-reading is the main correction step, posttransfer proof-reading is less effective or negligible (II2 approximately 1-8). Initial discrimination factors (I), which are due to differences in Gibbs free energies of binding between lysine and noncognate substrates (delta delta GI), were calculated from discrimination and proof-reading factors. In contrast to class I synthetases, for lysyl-tRNA synthetase only one initial discrimination step can be assumed and amino acid recognition is reduced to a three-step process instead of the four-step recognition observed for the class I synthetases. Plots of delta delta GI values against accessible surface areas of amino acids show clearly that phosphorylation of the enzyme changes the structures of the amino acid binding sites. This is illustrated by a hypothetical 'stopper model' of these sites.  相似文献   

18.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

19.
Genetics of actinomycin C production in Streptomyces chrysomallus   总被引:2,自引:1,他引:1       下载免费PDF全文
Three distinct classes of mutations affecting the biosynthesis of actinomycin have been established in Streptomyces chyrsomallus by crossing various actinomycin-nonproducing mutants with each other by protoplast fusion. In crosses between members of different classes of mutations, actinomycin-producing recombinant progeny arose, whereas in crosses between members of the same class, no actinomycin-producing recombinants were seen. Biochemical examination of a number of mutants revealed that the expression of all actinomycin synthetases was reduced by about 1 order of magnitude in mutants belonging to class II. In mutants of class I, the specific activities of the actinomycin synthetases were comparable with those measured in their actinomycin-producing parents. Feeding experiments with 4-methyl-3-hydroxyanthranilic acid (4-MHA), the biosynthetic precursor of the chromophore moiety of actinomycin, with representative mutants of the three genetic classes revealed formation of actinomycin in minute amounts by mutants of class I. It is suggested that mutants belonging to class I are mutated at a genetic locus involved in the biosynthesis of 4-MHA. Mutants belonging to class II appear to carry mutations at a locus involved in the regulation of the expression of the actinomycin synthetases. The role of the locus in class III mutations could not be assigned. Mapping studies in S. chrysomallus based on conjugal matings revealed the chromosomal linkage of all three loci. Mutations belonging to classes I and III were closely linked. Their genetic loci could be localized in a map interval of the chromosomal linkage group which is significantly distant from the gene locus represented by mutations belonging to class II.  相似文献   

20.
Archaeal prolyl-tRNA synthetases differ from their bacterial counterparts: they contain an additional domain (about 70 amino acids) appended to the carboxy-terminus and lack an editing domain inserted into the class II catalytic core. Biochemical and structural approaches have generated a wealth of information on amino acid and tRNA specificities for both types of ProRSs, but have left a number of aspects unexplored. We report here that the carboxy-terminal domain of Methanocaldococcus jannaschii ProRS is not involved in tRNA binding since its deletion only mildly affects the kinetic parameters for the enzyme. We also demonstrate that M. jannaschii ProRS is a homodimeric enzyme that is functionally asymmetric; only one of the two active sites at a time is able to form prolyl-adenylate, and only one tRNA molecule binds per dimer. Together with previous reports our results show that asymmetry might be a general feature of the aminoacylation reaction catalyzed by dimeric aminoacyl-tRNA synthetases from both classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号