首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domain of brevican, a nervous system-specific lectican, and cell surface SGGLs acts as a novel cell recognition system that promotes neuronal adhesion and neurite outgrowth. The Ig chimera of the brevican lectin domain bind to the surface of SGGL-expressing rat hippocampal neurons. The substrate of the brevican chimera promotes adhesion and neurite outgrowth of hippocampal neurons. The authentic, full-length brevican also promotes neuronal cell adhesion and neurite outgrowth. These activities of brevican substrates are neutralized by preincubation of cells with HNK-1 monoclonal antibodies and by pretreatment of the brevican substrates with purified SGGLs. Brevican and HNK-1 carbohydrates are coexpressed in specific layers of the developing hippocampus where axons from entorhinal neurons elongate. Our observations suggest that cell surface SGGLs and extracellular lecticans comprise a novel cell-substrate recognition system operating in the developing nervous system.  相似文献   

2.
The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.  相似文献   

3.
von Willebrand factor binds specifically to sulfated glycolipids   总被引:5,自引:0,他引:5  
The human plasma glycoprotein Factor VIII/von Willebrand factor (vWF) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). vWF does not bind to gangliosides, neutral glycolipids, phospholipids, or cholesterol 3-sulfate. Although the largest oligomers of vWF bind preferentially to sulfatides, vWF monomers and dimers also bind but with reduced affinity. vWF binding is inhibited at high ionic strength or low pH, by some sulfated polysaccharides and by antibodies to vWF. Binding of vWF to sulfatides is probably responsible for its agglutination of aldehyde-fixed erythrocytes and may play a role in vWF-induced platelet adhesion or platelet aggregation.  相似文献   

4.
The adult neural parenchyma contains a distinctive extracellular matrix that acts as a barrier to cell and neurite motility. Nonneural tumors that metastasize to the central nervous system almost never infiltrate it and instead displace the neural tissue as they grow. In contrast, invasive gliomas disrupt the extracellular matrix and disperse within the neural tissue. A major inhibitory component of the neural matrix is the lectican family of chondroitin sulfate proteoglycans, of which brevican is the most abundant member in the adult brain. Interestingly, brevican is also highly up-regulated in gliomas and promotes glioma dispersion by unknown mechanisms. Here we show that brevican secreted by glioma cells enhances cell adhesion and motility only after proteolytic cleavage. At the molecular level, brevican promotes epidermal growth factor receptor activation, increases the expression of cell adhesion molecules, and promotes the secretion of fibronectin and accumulation of fibronectin microfibrils on the cell surface. Moreover, the N-terminal cleavage product of brevican, but not the full-length protein, associates with fibronectin in cultured cells and in surgical samples of glioma. Taken together, our results provide the first evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of brevican in primary brain tumors. In addition, these results underscore the important functional implications of brevican processing in glioma progression.  相似文献   

5.
Sulfated glycolipids and cell adhesion   总被引:6,自引:0,他引:6  
The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfatides, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The three proteins differ, however, in the inhibition of their binding to sulfatides by sulfated polysaccharides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand factor, suggesting the involvement of laminin or thrombospondin, or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed on plastic promotes the attachment and spreading of some melanoma cells. Interestingly, fucoidan and an antibody against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment to thrombospondin-coated surfaces. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed on plastic also promote attachment and spreading of some cultured cell lines. Direct adhesion of melanoma cells requires high densities of adsorbed sulfatide. In the presence of laminin, however, specific adhesion of some cell types to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin is mediating adhesion by crosslinking receptors on the cell surface to sulfatide adsorbed on the plastic. Although thrombospondin also binds to sulfatides and to melanoma cells, it does not enhance but rather inhibits direct and laminin-dependent melanoma cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycolipids can participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

6.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

7.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

8.
Type XVII collagen (BP180) is a keratinocyte transmembrane protein that exists as the full-length protein in hemidesmosomes and as a 120-kDa shed ectodomain in the extracellular matrix. The largest collagenous domain of type XVII collagen, COL15, has been described previously as a cell adhesion domain (Tasanen, K., Eble, J. A., Aumailley, M., Schumann, H., Baetge, J, Tu, H., Bruckner, P., and Bruckner-Tuderman, L. (2000) J. Biol. Chem. 275, 3093-3099). In the present work, the integrin binding of triple helical, human recombinant COL15 was tested. Solid phase binding assays using recombinant integrin alpha(1)I, alpha(2)I, and alpha(10)I domains and cell spreading assays with alpha(1)beta(1)- and alpha(2)beta(1)-expressing Chinese hamster ovary cells showed that, unlike other collagens, COL15 was not recognized by the collagen receptors. Denaturation of the COL15 domain increased the spreading of human HaCaT keratinocytes, which could migrate on the denatured COL15 domain as effectively as on fibronectin. Spreading of HaCaT cells on the COL15 domain was mediated by alpha(5)beta(1) and alpha(V)beta(1) integrins, and it could be blocked by RGD peptides. The collagen alpha-chains in the COL15 domain do not contain RGD motifs but, instead, contain 12 closely related KGD motifs, four in each of the three alpha-chains. Twenty-two overlapping, synthetic peptides corresponding to the entire COL15 domain were tested; three peptides, all containing the KGD motif, inhibited the spreading of HaCaT cells on denatured COL15 domain. Furthermore, this effect was lost by mutation from D to E (KGE instead of KGD). We suggest that the COL15 domain of type XVII collagen represents a specific collagenous structure, unable to interact with the cellular receptors for other collagens. After being shed from the cell surface, it may support keratinocyte spreading and migration.  相似文献   

9.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

10.
We describe two additive systems of intercellular adhesion in teratocarcinoma stem cells (Nulli cell line). One component is divalent cation-dependent (Ca++ or Mg++) and the other involves a cell surface fucan/mannan-specific lectin, previously identified on stem cells by an erythrocyte rosetting assay. The existence of these two systems is inferred from the observation that reaggregation of stem cells was partially inhibited by the removal of divalent cations or by the presence of lectin inhibitors such as fucoidan, but reaggregation was completely blocked when the two conditions were combined. Our results are related to recent work describing a calcium-dependent system of intercellular adhesion in teratocarcinoma stem cells.  相似文献   

11.
Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids   总被引:5,自引:0,他引:5  
We describe a technique for examining the ability of one important class of cell surface complex carbohydrates, glycosphingolipids, to mediate carbohydrate-specific cell recognition and adhesion. Analogs of natural glycosphingolipids were synthesized, consisting of 1-glycosyl derivatives of 3-deoxyceramide (N-palmitoyl-2-aminostearol) radiolabeled in the fatty acid portion. Methods were developed to efficiently adsorb both these synthetic glycolipids and natural glycosphingolipids (including gangliosides) from aqueous ethanol solution onto plastic wells. The glycolipids remained firmly attached to the surface in aqueous solutions, but could be recovered using detergents or organic solvents. The ability of the adsorbed glycolipids to elicit specific adhesion of intact hepatocytes was tested using specific adhesion of intact hepatocytes was tested using a cell adhesion assay based on that of McClay, D. R., Wessel, G. M., and Marchase, R. B. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4975-4979. When otherwise nonadhesive plastic surfaces were adsorbed with N-acetylglucosaminyl 3-deoxyceramide, they supported adhesion of 80-95% of the chicken hepatocytes added to the well. No adhesion above background levels (10-25%) was observed to surfaces adsorbed with other synthetic glycolipids including glucosyl, galactosyl, mannosyl, or lactosyl 3-deoxyceramide, 3-deoxyceramide, or to the naturally occurring glycosphingolipids, lactosyl ceramide or ganglioside GM1. Chicken hepatocyte adhesion to surfaces adsorbed with N-acetylglucosaminyl 3-deoxyceramide was inhibited by soluble N-acetylglucosamine (IC50 = 3 m M), but not by other soluble sugars. Rat hepatocytes adhered preferentially to surfaces adsorbed with lactosyl 3-deoxyceramide, but not to surfaces adsorbed with the N-acetylglucosaminyl derivative. These studies demonstrate the ability of adsorbed glucolipids to mediate carbohydrate- and cell-specific adhesion from intact cells. Using these techniques, the ability of naturally occurring complex glycosphingolipids to elicit specific cellular responses from a variety of cell types can be examined.  相似文献   

12.
13.
The cell surface proteoglycan of mouse mammary epithelial (NMuMG) cells behaves as a receptor for interstitial matrix materials and consists of a membrane-associated domain and an extracellular domain (ectodomain). The ectodomain can be released intact from the cell surface by mild trypsin treatment and appears to be shed from the cells into the culture medium by cleavage from the membrane-associated domain. We have examined the chemical relationship between the trypsin-released proteoglycan and shed proteoglycan to assess their relationship to each other and to the cell surface. Purification and amino acid sequencing of the ectodomain released by mild trypsin treatment resulted in no clear signal until the protein was cleaved by CNBr treatment, suggesting that its N terminus is blocked and oriented extracellularly. The amino acid sequence identified in the trypsin-released ectodomain is present near the N terminus of the shed proteoglycan purified from conditioned medium, indicating that both forms possess closely related (if not identical) core proteins. The sequence reveals a pentapeptide identical to one near the C terminus of the rat hepatic lectin (RHL-1, rat asialoglycoprotein receptor). The medium proteoglycan, which migrates as a smear on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (between 93 and 200 kDa), is heterogeneous due to varying amounts of glycosaminoglycan and substituted O-linked oligosaccharide present on an approximately 46-kDa polypeptide.  相似文献   

14.
We have previously shown that aggregation of microbeads coated with N- CAM and Ng-CAM is inhibited by incubation with soluble neurocan, a chondroitin sulfate proteoglycan of brain, suggesting that neurocan binds to these cell adhesion molecules (Grumet, M., A. Flaccus, and R. U. Margolis. 1993. J. Cell Biol. 120:815). To investigate these interactions more directly, we have tested binding of soluble 125I- neurocan to microwells coated with different glycoproteins. Neurocan bound at high levels to Ng-CAM and N-CAM, but little or no binding was detected to myelin-associated glycoprotein, EGF receptor, fibronectin, laminin, and collagen IV. The binding to Ng-CAM and N-CAM was saturable and in each case Scatchard plots indicated a high affinity binding site with a dissociation constant of approximately 1 nM. Binding was significantly reduced after treatment of neurocan with chondroitinase, and free chondroitin sulfate inhibited binding of neurocan to Ng-CAM and N-CAM. These results indicate a role for chondroitin sulfate in this process, although the core glycoprotein also has binding activity. The COOH-terminal half of neurocan was shown to have binding properties essentially identical to those of the full-length proteoglycan. To study the potential biological functions of neurocan, its effects on neuronal adhesion and neurite growth were analyzed. When neurons were incubated on dishes coated with different combinations of neurocan and Ng-CAM, neuronal adhesion and neurite extension were inhibited. Experiments using anti-Ng-CAM antibodies as a substrate also indicate that neurocan has a direct inhibitory effect on neuronal adhesion and neurite growth. Immunoperoxidase staining of tissue sections showed that neurocan, Ng-CAM, and N-CAM are all present at highest concentration in the molecular layer and fiber tracts of developing cerebellum. The overlapping localization in vivo, the molecular binding studies, and the striking effects on neuronal adhesion and neurite growth support the view that neurocan may modulate neuronal adhesion and neurite growth during development by binding to neural cell adhesion molecules.  相似文献   

15.

Background  

Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli.  相似文献   

16.
Mouse entactin derived from the extracellular matrix of M1536-B3 cells and from insect cells infected with a recombinant virus containing entactin sequences were shown to promote the attachment of mouse mammary tumor, human melanoma, and other cells. The cell attachment was inhibited by antibodies against mouse entactin but not by anti-fibronectin or anti-laminin antibodies. On a weight basis entactin was as effective as laminin in promoting the attachment of mouse mammary tumor cells. The attachment of cells to entactin was in part mediated by the integrin recognition RGD peptide sequence. This was demonstrated by the cell attachment properties of peptides derived from entactin which contained this sequence. Furthermore, the peptide RGDS could inhibit the attachment of mouse mammary tumor cells to entactin to approximately 60% of control. It is suggested that additional cell recognition sequences may be present in entactin. The direct binding of calcium ions to entactin was observed. It is probable that the binding sites reside in peptide sequences located toward the NH2 terminus region of entactin. This conclusion was supported by the demonstration that synthetic peptides, containing potential calcium binding sequences derived from entactin, bound calcium. In addition, a recombinant peptide containing the amino-terminal 330 amino acids of entactin also bound calcium ions. The significance of these properties of entactin is discussed.  相似文献   

17.
Neisseria meningitidis possesses a repertoire of surface adhesins that promote bacterial adherence to and entry into mammalian cells. Here, we have identified heparan sulphate proteoglycans as epithelial cell receptors for the meningococcal Opc invasin. Binding studies with radiolabelled heparin and heparin affinity chromatography demonstrated that Opc is a heparin binding protein. Subsequent binding experiments with purified 35SO4-labelled epithelial cell proteoglycan receptors and infection assays with epithelial cells that had been treated with heparitinase to remove glycosaminoglycans confirmed that Opc-expressing meningococci exploit host cell-surface proteoglycans to gain access to the epithelial cell interior. Unexpectedly, Opa28-producing meningococci lacking Opc also bound proteoglycans. These bacteria also bound CEA receptors in contrast to the Opc-expressing phenotype, suggesting that Opa28 may possess domains with specificity for different receptors. Opa/Opc-negative meningococci did not bind either proteoglycan or CEA receptors. Using a set of genetically defined mutants with different lipopolysaccharide (LPS) and capsular phenotype, we were able to demonstrate that surface sialic acids interfere with the Opc–proteoglycan receptor interaction. This effect may provide the molecular basis for the reported modulatory effect of capsule and LPS on meningococcal adherence to and entry into various cell types.  相似文献   

18.
APRIL, a proliferation-inducing ligand, is a member of the tumor necrosis factor (TNF) family that is expressed by various types of tumors and influences their growth in vitro and in vivo. Two receptors, transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), bind APRIL, but neither is essential for the tumor-promoting effects, suggesting that a third receptor exists. Here, we report that APRIL specifically binds to heparan sulfate proteoglycans (HSPG) on the surface of tumor cells. This binding is mediated by the heparin sulfate side chains and can be inhibited by heparin. Importantly, BCMA and HSPG do not compete, but can bind APRIL simultaneously, suggesting that different regions in APRIL are critical for either interaction. In agreement, mutation of three lysines in a putative heparin sulfate-binding motif, which is not part of the TNF fold, destroys interaction with HSPG, while binding to BCMA is unaffected. Finally, whereas interaction of APRIL with HSPG does not influence APRIL-induced proliferation of T cells, it is crucial for its tumor growth-promoting activities. We therefore conclude that either HSPG serve as a receptor for APRIL or that HSPG binding allows APRIL to interact with a receptor that promotes tumor growth.  相似文献   

19.
Klocek G  Seelig J 《Biochemistry》2008,47(9):2841-2849
Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4).  相似文献   

20.
We have examined the carbohydrate specificity of bindin, a sperm protein responsible for the adhesion of sea urchin sperm to eggs, by investigating the interaction of a number of polysaccharides and glycoconjugates with isolated bindin. Several of these polysaccharides inhibit the agglutination of eggs by bindin particles. An egg surface polysaccharide was found to be the most potent inhibitor of bindin- mediated egg agglutination. Fucoidin, a sulfated fucose heteropolysaccharide, was the next most potent inhibitor, followed by the egg jelly fucan, a sulfated fucose homopolysaccharide, and xylan, a beta(1 leads to 4) linked xylose polysaccharide. A wide variety of other polysaccharides and glycoconjugates were found to have no effect on egg agglutination. We also report that isolated bindin has a soluble lectinlike activity which is assayed by agglutination of erythrocytes. The bindin lectin activity is inhibited by the same polysaccharides that inhibit egg agglutination by particulate bindin. This suggests that the egg adhesion activity of bindin is directly related to its lectin activity. We have established that fucoidin binds specifically to bindin particles with a high apparent affinity (Kd = 5.5 X 10(-8) M). The other polysaccharides that inhibit egg agglutination also inhibit the binding of 125I-fucoidin to bindin particles, suggesting that they compete for the same site on bindin. The observation that polysaccharides of different composition and linkage type interact with bindin suggests that the critical structural features required for binding may reside at a higher level of organization. Together, these findings strengthen the hypothesis that sperm-egg adhesion in sea urchins is mediated by a lectin-polysaccharide type of interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号