首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recessive alleles (mlo) of the Mlo locus in barley mediate a broad, non-race-specific resistance reaction to the powdery mildew fungus Erysiphe graminis f sp hordei. A mutational approach was used to identify genes that are required for the function of mlo. Six susceptible M2 individuals were isolated after inoculation with the fungal isolate K1 from chemically mutagenized seed carrying the mlo-5 allele. Susceptibility in each of these individuals is due to monogenic, recessively inherited mutations in loci unlinked to mlo. The mutants identify two unlinked complementation groups, designated Ror1 and Ror2 (required for mlo-specified resistance). Both Ror genes are required for the function of different tested mlo alleles and for mlo function after challenge with different isolates of E. g. f sp hordei. A quantitative cytological time course analysis revealed that the host cell penetration efficiency in the mutants is intermediate compared with mlo-resistant and Mlo-susceptible genotypes. Ror1 and Ror2 mutants could be differentiated from each other by the same criterion. The spontaneous formation of cell wall appositions in mlo plants, a subcellular structure believed to represent part of the mlo defense, is suppressed in mlo/ror genotypes. In contrast, accumulation of major structural components in the appositions is seemingly unaltered. We conclude that there is a regulatory function for the Ror genes in mlo-specified resistance and propose a model in which the Mlo wild-type allele functions as a negative regulator and the Ror genes act as positive regulators of a non-race-specific resistance response.  相似文献   

2.
3.
4.
Recessive mlo alleles of the barley Mlo gene confer resistance to almost all known isolates of the powdery mildew fungal pathogen targeting barley (Hordeum vulgare). To characterize haplotypes present in the Mlo chromosomal region of cultivated Mlo and mlo barley genotypes, we conducted a polymorphism search in 3 predicted low-copy sequence regions adjacent to the Mlo gene by examining a sample of 4 Mlo and 3 mlo cultivars. Eight single-nucleotide polymorphisms (SNPs) and 1 insertion-deletion (indel) were detected, and easy to use PCR-based markers were developed for typing the SNPs. The PCR markers were used to characterize a collection of 46 Mlo and 25 mlo barley cultivars, identifying 3 distinct mlo-11 haplotypes, 1 mlo-9 haplotype, and 4 Mlo haplotypes. We summarized the haplotype and marker information obtained here and in a previous study to help breeders identify strategies for mlo marker-assisted selection. The ability of the markers to identify mlo-resistant genotypes in segregating populations was demonstrated using 2 resistance-characterized F2 populations derived by 3-way crosses.  相似文献   

5.
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.  相似文献   

6.
Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Ris?-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Ris?-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Ris?-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.  相似文献   

7.
Calcium-dependent protein kinases (CDPKs) are known to play pivotal roles in intracellular signaling during abiotic and biotic stress responses. To unravel potential functions of CDPKs in the course of barley (Hordeum vulgare)-powdery mildew (Blumeria graminis) interactions, we systematically analyzed the HvCDPK gene family. We found that, according to the existence of respective expressed sequence tags, at least nine paralogs are expressed in the barley leaf epidermis, the sole target tissue of powdery mildew fungi. We exemplarily selected two HvCDPKs with known full-length coding sequence for functional analysis. Transient expression of a putative constitutive active variant of one of these (HvCDPK4) in Nicotiana benthamiana triggered kinase-dependent mesophyll cell death in tobacco leaves. In a barley mlo mutant genotype, a constitutive active variant of the second paralog, HvCDPK3, partially compromised the highly effective resistance to B. graminis f. sp. hordei. A similar break of mlo resistance was seen upon expression of the junction domain of HvCDPK4, supposed to act as a dominant inhibitor of CDPK activity. Expression of a constitutive active HvCDPK3 or HvCDPK4 form also compromised penetration resistance to the inappropriate wheat powdery mildew fungus. Collectively, our data provide evidence for antagonistic roles of individual CDPK paralogs in the control of host cell entry during the early phase of powdery mildew pathogenesis.  相似文献   

8.
Isolates of Magnaporthe oryzae (the causal agent of rice blast disease) can infect a range of grass species, including barley. We report that barley Hordeum vulgare cv. Baronesse and an experimental line, BCD47, show a range of resistance reactions to infection with two rice blast isolates. The complete resistance of Baronesse to the isolate Ken 54-20 is controlled by a single dominant gene, designated RMo1. RMo1 mapped to the same linkage map position on chromosome 1H as the powdery mildew resistance locus Mla and an expressed sequence tag (k04320) that corresponds to the barley gene 711N16.16. A resistance quantitative trait locus (QTL), at which Baronesse contributed the resistance allele, to the isolate Ken 53-33 also mapped at the same position as RMo1. Synteny analysis revealed that a corresponding region on rice chromosome 5 includes the bacterial blight resistance gene xa5. These results indicate that a defined region on the short arm of barley chromosome 1H, including RMo1 and Mla, harbors genes conferring qualitative and quantitative resistance to multiple pathogens. The partial resistance of BCD47 to Ken53-33 is determined by alleles at three QTL, two of which coincide with the linkage map positions of the mildew resistance genes mlo and Mlf.  相似文献   

9.
An interference assay has been devised in Schizosaccharomyces pombe to rapidly identify and clone genes involved in chromosome segregation. Random S.pombe cDNAs were overexpressed from an inducible promoter in a strain carrying an additional, non-essential minichromosome. Overexpression of cDNAs derived from four genes, two known (nda3+and ubc4+, encoding beta-tubulin and a ubiquitin conjugating enzyme, respectively) and two unknown, named mlo2+ and mlo3+ (missegregation & lethal when over expressed) caused phenotypes consistent with a failure to segregate chromosomes. Full overexpression of all four cDNAs was lethal. Cells overexpressing nda3+ and ubc4+ cDNAs arrested with condensed unsegregated chromosomes and cells overexpressing mlo2+ displayed an asymmetric distribution of nuclear chromatin. Sublethal levels of overexpression of nda3+, ubc4+ and mlo2+ cDNAs caused elevated rates of minichromosome loss. A third cDNA mlo3+, displayed no increase in the frequency of minichromosome loss at sublethal levels of overexpression but full overexpression caused a complete failure to segregate chromosomes. Our results confirm the assumption that beta-tubulin overexpression is lethal in S.pombe, implicate ubc4+ in the control of metaphase-anaphase transition in fission yeast and finally identify two new genes, mlo2+and mlo3+, likely to play an important role for chromosome transmission fidelity in mitosis.  相似文献   

10.
Durability and effectiveness against all genetic variants of a microbial species are hallmarks of so-called plant 'non-host' resistance. Highly effective immunity of monocotyledonous barley against the fungal powdery mildew pathogen, which is conferred by loss-of-function mutant alleles of the barley Mlo locus, likewise is a durable and broad-spectrum type of resistance. Although this was long considered as being a barley-specific phenomenon, recent findings indicate that mlo resistance can also occur in the distantly related dicotyledonous species Arabidopsis thaliana . Shared histological and phytopathological characteristics plus a conserved requirement for a set of genes in Arabidopsis mlo and non-host powdery mildew resistance indicate a potential common mechanism for these two seemingly distinct types of immunity.  相似文献   

11.
Key message

Arabidopsis thaliana mlo3 mutant plants are not affected in pathogen infection phenotypes but—reminiscent of mlo2 mutant plants—exhibit spontaneous callose deposition and signs of early leaf senescence.

Abstract

The family of Mildew resistance Locus O (MLO) proteins is best known for its profound effect on the outcome of powdery mildew infections: when the appropriate MLO protein is absent, the plant is fully resistant to otherwise virulent powdery mildew fungi. However, most members of the MLO protein family remain functionally unexplored. Here, we investigate Arabidopsis thaliana MLO3, the closest relative of AtMLO2, AtMLO6 and AtMLO12, which are the Arabidopsis MLO genes implicated in the powdery mildew interaction. The co-expression network of AtMLO3 suggests association of the gene with plant defense-related processes such as salicylic acid homeostasis. Our extensive analysis shows that mlo3 mutants are unaffected regarding their infection phenotype upon challenge with the powdery mildew fungi Golovinomyces orontii and Erysiphe pisi, the oomycete Hyaloperonospora arabidopsidis, and the bacterial pathogen Pseudomonas syringae (the latter both in terms of basal and systemic acquired resistance), indicating that the protein does not play a major role in the response to any of these pathogens. However, mlo3 genotypes display spontaneous callose deposition as well as signs of early senescence in 6- or 7-week-old rosette leaves in the absence of any pathogen challenge, a phenotype that is reminiscent of mlo2 mutant plants. We hypothesize that de-regulated callose deposition in mlo3 genotypes might be the result of a subtle transient aberration of salicylic acid-jasmonic acid homeostasis during development.

  相似文献   

12.
Barley plants carrying a mutation in the Mlo (barley [Hordeum vulgare L.] cultivar Ingrid) locus conferring a durable resistance against powdery mildew are hypersusceptible to the rice blast fungus Magnaporthe grisea. It has been speculated that a functional Mlo gene is required for the expression of basic pathogen resistance and that the loss of Mlo function mediating powdery mildew resistance is an exception for this particular disease. Here, we report that the onset of acquired resistance (AR) after chemical as well as biological treatments is sufficient to overcome the hypersusceptible phenotype of backcross line BCIngridmlo5 (mlo) barley plants against M. grisea. Moreover, even barley plants bearing a functional Mlo gene and thus showing a moderate infection phenotype against rice blast exhibit a further enhanced resistance after induction of AR. Cytological investigations reveal that acquired resistance in mlo genotypes is manifested by the restoration of the ability to form an effective papilla at sites of attempted penetration, similarly to wild-type Mlo plants. In addition, the rate of effective papillae formation in Mlo plants was further enhanced after the onset of AR. These results demonstrate that treatments leading to the AR state in barley function independently of the Mlo/mlo phenotype and suggest that the Mlo protein is not a component of the AR signaling network. Moreover, it seems that only concomitant action of Mlo together with AR permits high level resistance in barley against blast. Higher steady state levels of PR1 and barley chemically induced mRNA correlate with higher disease severity rather than with the degree of resistance observed in this particular interaction.  相似文献   

13.
Small GTP-binding proteins such as those from the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture, secondary wall formation, meristem signaling, and defense against pathogens. We isolated a RacB homolog from barley (Hordeum vulgare) to study its role in resistance to the barley powdery mildew fungus (Blumeria graminis f.sp. hordei). RacB was constitutively expressed in the barley epidermis and its expression level was not strongly influenced by inoculation with B. graminis. However, after biolistic bombardment of barley leaf segments with RacB-double-stranded RNA, sequence-specific RNA interference with RacB function inhibited fungal haustorium establishment in a cell-autonomous and genotype-specific manner. Mutants compromised in function of the Mlo wild-type gene and the Ror1 gene (genotype mlo5 ror1) that are moderately susceptible to B. graminis showed no alteration in powdery mildew resistance upon RacB-specific RNA interference. Thus, the phenotype, induced by RacB-specific RNA interference, was apparently dependent on the same processes as mlo5-mediated broad resistance, which is suppressed by ror1. We conclude that an RAC small GTP-binding protein is required for successful fungal haustorium establishment and that this function may be linked to MLO-associated functions.  相似文献   

14.
大麦抗白粉病基因Mlo的研究进展   总被引:10,自引:0,他引:10  
野生型Mlo基因是大麦抗白粉病的负调控因子,该基因突变,赋予大麦对白粉菌的广谱抗性。综述了Mlo基因结构、功能及Mlo突变的等位基因(mlo)的抗性特点;讨论了mlo基因可能的抗病机制。为mlo抗性在麦类白粉病抗病育种中的应用提供了理论基础。  相似文献   

15.
Interactions between introns via exon definition in plant pre-mRNA splicing   总被引:3,自引:1,他引:2  
The barley gene Mlo encodes a prototype of a novel class of plant proteins. In mlo mutants, absence of the 60 kDa wild-type Mlo protein results in broad-spectrum resistance to the powdery mildew fungus, Erysiphe graminis f. sp. hordei . To directly assess its function, Mlo was transiently expressed with a marker gene encoding a modified green fluorescent protein (GFP) in leaf epidermal cells of mlo resistant barley lines. Fungal inoculation of epidermal cells transfected with wild-type Mlo led to haustorium formation and abundant sporulation. Therefore, expression of the wild-type Mlo gene, in mlo resistant genotypes, is both necessary and sufficient to restore susceptibility to fungal attack. Complementation of mlo resistance alleles was restricted to single host cells, indicating a cell-autonomous function for the wild-type Mlo protein. We discuss our findings with respect to source–sink relationships of plants and biotrophic fungi and the potentially wide-ranging use of the transient complementation assay to analyse host compatibility and defence in response to powdery mildew attack.  相似文献   

16.
17.
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.  相似文献   

18.
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR‐defective mlo2 mutants were still competent in systemically increasing the levels of the SAR‐activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR‐related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA‐ or Pip‐inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.  相似文献   

19.
Dong W  Nowara D  Schweizer P 《The Plant cell》2006,18(11):3321-3331
To study protein ubiquitination pathways in the interaction of barley (Hordeum vulgare) with the powdery mildew fungus (Blumeria graminis), we measured protein turnover and performed transient-induced gene silencing (TIGS) of ubiquitin and 26S proteasome subunit encoding genes in epidermal cells. Attack by B. graminis hyperdestabilized a novel unstable green fluorescent protein fusion that contains a destabilization domain of a putative barley 1-aminocyclopropane-1-carboxylate synthase, suggesting enhanced protein turnover. Partial depletion of cellular ubiquitin levels by TIGS induced extreme susceptibility of transformed cells toward the appropriate host pathogen B. graminis f. sp hordei, whereas papilla-based resistance to the nonhost pathogen B. graminis f. sp tritici and host resistance mediated by the mlo gene (for mildew resistance locus O) remained unaffected. Cells were rescued from TIGS-induced ubiquitin depletion by synthetic genes encoding wild-type or mutant barley monoubiquitin proteins. The strongest rescue was from a gene encoding a K63R mutant form of ubiquitin blocked in several ubiquitination pathways while still allowing Lys-48-dependent polyubiquitination required for proteasomal protein degradation. Systematic RNA interference of 40 genes encoding all 17 subunits of the proteasome 19S regulatory particle failed to induce hypersusceptibility against B. graminis f. sp hordei. This suggests a role for Lys-48-linked protein polyubiquitination, which is independent from the proteasome pathway, in basal host defense of barley.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号