首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Soil-dwelling mites of four plots under organic management were investigated in April and December 1998 and in December 1999. Their populations were compared with mite populations in a pasture and forest in the vicinity. It was observed that there was always an initial reduction in the populations of soil mites and in the activity of the epigeic forms whenever a plot was opened up and disturbed mechanically in preparation for cultivation, irrespective of previous organic inputs. With time, the densities and activities of mites recovered under organic management. The uropodine and oribatid mites in particular benefited more from organic management than gamasine and actinedid mites. Uropodine mites increased tremendously under banana where there was fresh cow dung manure. Oribatid mite species Nothrus seropedicalensis and Archegozetes magnus were dominant in organic plots where the soil was moist and temperatures were lower than the ambient. Protoribates rioensis was dominant in organic plots where the soil was drier and temperatures were higher than the ambient. Galumna was the most active oribatid taxon on the floor of all plots, with the highest activity recorded under maracuja and in pasture plots. The results suggest that while densities and activities of soil mites increased in the organic plots, the community structure and recruitment period of oribatid mites were altered. Oribatid mite diversity was higher in the organic plots than in the pasture but lower than in the forest, where Belba sp. and many Eremobelboid brachypiline genera were present, but absent in the organic plots and pasture.  相似文献   

2.
The vertical distribution, microenvironmental preference, canopy cover, as well as monthly fluctuations of recently described species of three genera of macropyline oribatid mites, Mesoplophora, Bicyrthermannia and Nothrus and three genera of brachypyline mites, Scheloribates, Muliercula and Galumnella were investigated over a 9-month period in shaded and unshaded areas of a secondary regrowth forest floor in Ile Ife, Nigeria. Sampling was done monthly from August 2002 to April 2003 covering the two seasons of the annual cycle. There was an overwhelming predominance of mite populations in the 5 cm topsoil compared with the fermentation and litter layers. The preference of M. ifeana and B. nigeriana extracted from the topsoil for the shaded plot was attributed to highly conducive moisture conditions provided by the canopy. It is suggested that M. ifeana, B. nigeriana, N. lasebikani, S. mochlosimilaris, M. inexpectata and G. sonpona, that exhibited a single peak density in the wet season in this study, had similar ecological needs. The populations of M. ifeana and S. mochlosimilaris were relatively stable in the fermentation layer. The study concluded that canopy cover affected the sensitivity of soil dwelling mites on the floor of a secondary regrowth forest with regard to vertical gradients of light, microclimate and foliage quality in a complex way.  相似文献   

3.
Tree hollows are known to harbour a species-rich and specialized beetle fauna, while other invertebrates, such as for instance mites, have been much less studied. The importance of hollows in oak trees (Quercus robur) for local oribatid mite diversity was studied at three sites in south eastern Sweden. The qualitative and quantitative composition of the oribatid mite fauna was studied in hollows of fifteen 240–420 years old oak trees and compared to that in the surrounding soil. A total of 5,530 specimen of adult oribatid mites were determined belonging to 63 taxa. Taxonomic composition and community structure of the tree hollow communities differed markedly from the soil communities. The most dominant and frequent component of the tree hollow communities comprised a Carabodes species new to Sweden that accounted on average for 44 % of all Oribatida. This species, that closely resembles both Carabodes oenipontanus and Carabodes granulatus, was specific to the tree hollows. Dominance patterns in the soil communities were more even, with the most common taxa also occurring in the tree hollows but exhibiting a significant preference for the soil. Overall, there was little taxonomic overlap between the communities, suggesting that tree hollows harbour an independent mite community from the soil and therefore significantly contribute to the overall mite diversity on the landscape level. The present study therefore strongly supports the use of hollow trees as biodiversity indicators and also their conservation, which will preserve specialised invertebrate communities, including mites.  相似文献   

4.
The aim of the present study was to identify food sources of bark-living oribatid mites to investigate if trophic niche differentiation contributes to the diversity of bark living Oribatida. We measured the natural variation in stable isotope ratios (15N/14N, 13C/12C) in oribatid mites from the bark of oak (Quercus robur), beech (Fagus sylvatica), spruce (Picea abies) and pine (Pinus sylvestris) trees and their potential food sources, i.e., the covering vegetation of the bark (bryophytes, lichens, algae, fungi). As a baseline for calibration the stable isotope signatures of the bark of the four tree species were measured and set to zero. Oribatid mite stable isotope ratios spanned over a range of about 13 δ units for 15N and about 7 δ units for 13C suggesting that they span over about three trophic levels. Different stable isotope signatures indicate that bark living oribatid mites feed on different food sources, i.e., occupy distinct trophic niches. After calibration stable isotope signatures of respective oribatid mite species of the four tree species were similar indicating close association of oribatid mites with the corticolous cover as food source. Overall, the results support the hypothesis that trophic niche differentiation of bark living oribatid mites contributes to the high diversity of the group.  相似文献   

5.
The community structure, stable isotope ratios (15N/14N, 13C/12C) and reproductive mode of oribatid mites (Acari, Oribatida) were investigated in four habitats (upper tree bark, lower tree bark, dry grassland soil, forest soil) at two sites in the Central Alps (Tyrol, Austria). We hypothesized that community structure and trophic position of oribatid mites of dry grassland soils and bark of trees are similar since these habitats have similar abiotic characteristics (open, dry) compared with forest soil. Further, we hypothesized that derived taxa of oribatid mites reproducing sexually dominate on the bark of trees since species in this habitat consume living resources such as lichens. In contrast to our hypothesis, the community structure of oribatid mites differed among grassland, forest and bark indicating the existence of niche differentiation in the respective oribatid mite species. In agreement with our hypothesis, sexually reproducing taxa of oribatid mites dominated on the bark of trees whereas parthenogenetic species were more frequent in soil. Several species of bark-living oribatid mites had stable isotope signatures that were similar to lichens indicating that they feed on lichens. However, nine species that frequently occurred on tree bark did not feed on lichens according to their stable isotope signatures. No oribatid mite species could be ascribed to moss feeding. We conclude that sexual reproduction served as preadaptation for oribatid mites allowing them to exploit new habitats and new resources on the bark of trees. Abiotic factors likely are of limited importance for bark-living oribatid mites since harsh abiotic conditions are assumed to favor parthenogenesis.  相似文献   

6.
强度石漠化区不同植被修复模式下土壤螨类群落差异   总被引:3,自引:2,他引:1  
陈浒  金道超  陈航  王鹏举  周政  林丹丹 《生态学报》2018,38(19):7045-7056
石漠化治理区不同植被修复模式下的土壤螨类群落差异反映了生态系统的恢复状况,可籍以反映石漠化治理的生态效果。2014年1月、4月、8月和10月,对贵州花江喀斯特峡谷区顶坛小流域强度石漠化区域的"花椒"、"金银花"、"花椒+金银花"3种植被修复生境的土壤螨类进行了调查,共捕获土壤螨类1372头,隶属3目55科89属。采用类群(属)数、个体数量、个体密度、多样性指数(H')、丰富度指数(SR)、均匀性指数(J)、相似性指数(CN)、捕食性螨类成熟度指数(MI)和甲螨MGP类群等参数对土壤螨类群落差异进行了表征。结果显示,花椒林拥有较丰富的螨类属,金银花林拥有较高的的个体数量和个体密度。不同模式下的科、属类群组成呈现差异;属数、个体数量存在一定的季节差异,花椒林的螨类属数、金银花林的螨类个体数量和个体密度呈现一定的表聚性;群落多样性大多存在季节差异;捕食性革螨以r选择型为主,甲螨主要为O型和M型。研究表明,强度石漠化在不同植被修复模式下,土壤螨类生物生态类群存在差异,土壤生态系统仍处于修复之中,其中螨类优势属、具有典型生物学与生态学特性差异的螨类类群对石漠化治理的生态效果具有重要的指示作用。  相似文献   

7.
Aim This study investigates the species–area relationship (SAR) for oribatid mite communities of isolated suspended soil habitats, and compares the shape and slope of the SAR with a nested data set collected over three spatial scales (core, patch and tree level). We investigate whether scale dependence is exhibited in the nested sampling design, use multivariate regression models to elucidate factors affecting richness and abundance patterns, and ask whether the community composition of oribatid mites changes in suspended soil patches of different sizes. Location Walbran Valley, Vancouver Island, Canada. Methods A total of 216 core samples were collected from 72 small, medium and large isolated suspended soil habitats in six western redcedar trees in June 2005. The relationship between oribatid species richness and habitat volume was modelled for suspended soil habitat isolates (type 3) and a nested sampling design (type 1) over multiple spatial scales. Nonlinear estimation parameterized linear, power and Weibull function regression models for both SAR designs, and these were assessed for best fit using R2 and Akaike's information criteria (ΔAIC) values. Factors affecting oribatid mite species richness and standardized abundance (number per g dry weight) were analysed by anova and linear regression models. Results Sixty‐seven species of oribatid mites were identified from 9064 adult specimens. Surface area and moisture content of suspended soils contributed to the variation in species richness, while overall oribatid mite abundance was explained by moisture and depth. A power‐law function best described the isolate SAR (S = 3.97 × A0.12, R2 = 0.247, F1,70 = 22.450, P < 0.001), although linear and Weibull functions were also valid models. Oribatid mite species richness in nested samples closely fitted a power‐law model (S = 1.96 × A0.39, R2 = 0.854, F1,18 = 2693.6, P < 0.001). The nested SAR constructed over spatial scales of core, patch and tree levels proved to be scale‐independent. Main conclusions Unique microhabitats provided by well developed suspended soil accumulations are a habitat template responsible for the diversity of canopy oribatid mites. Species–area relationships of isolate vs. nested species richness data differed in the rate of accumulation of species with increased area. We suggest that colonization history, stability of suspended soil environments, and structural habitat complexity at local and regional scales are major determinants of arboreal oribatid mite species richness.  相似文献   

8.
北方常见农业土地利用方式对土壤螨群落结构的影响   总被引:2,自引:0,他引:2  
韩雪梅  李丹丹  梁子安  陈云峰  胡诚 《生态学报》2013,33(16):5026-5034
土壤螨群落与土壤健康状况密切相关,农业土地利用方式会影响土壤螨的生存环境,进而影响螨的群落分布。在北方传统农业区研究了小麦玉米常规轮作农田,1年温室蔬菜大棚、4年温室蔬菜大棚和4年露天菜地下土壤主要理化指标和螨群落结构。研究结果表明露天菜地和温室大棚的利用方式均会提高土壤碱解氮和有机质含量,同时温室大棚的长期利用会增加土壤有效磷含量。螨群落分析显示常规农田中甲螨亚目为优势类群;常规农田转变为温室大棚后,由于施肥造成土壤营养物质含量增加,以及人类对土壤扰动程度的提高,无气门亚目取代甲螨亚目成为温室内螨优势类群。但随着温室年限的延长,螨多样性和粉螨科丰度都要有所下降,这可能是磷累积和强扰动效应的共同后果。常规农田转变为露天菜地后,加强的人类扰动也会降低甲螨亚目丰度,但与温室螨群落相比,4个亚目分布要相对均匀。温室在3种土地利用类型中对土壤螨的负面影响最为明显,从土壤功能的自我维持和修复方面来讲是十分不利的,温室内土壤生物多样性的保护尤其值得人们关注和重视。  相似文献   

9.

Oribatid mites are tiny arthropods that are common in all soils of the world; however, they also occur in microhabitats above the soil such as lichens, mosses, on the bark of trees and in suspended soils. For understanding oribatid mite community structure, it is important to know whether they are dispersal limited. The aim of this study was to investigate the importance of oribatid mite dispersal using Malaise traps to exclude sole passive wind-dispersal. Oribatid mite communities were collected over a 3-year period from five habitat types (coniferous forests, deciduous forests, mixed forests, meadows, bog/heathlands sites) and three seasons (spring, summer, autumn) in Sweden. Mites entered traps either by walking or by phoresy, i.e., by being attached to flying insects. We hypothesized (1) that oribatid mite communities in the traps differ between habitats, indicating habitat-limited dispersal, and (2) that oribatid mite communities differ among seasons suggesting that dispersal varies due to changing environmental conditions such as moisture or resource availability. The majority of the collected species were not typically soil-living species but rather from habitats such as trees, lichens and mosses (e.g., Carabodes labyrinthicus, Cymbaeremaeus cymba, Diapterobates humeralis and Phauloppia lucorum) indicating that walking into the traps or entering them via phoresy are of greater importance for aboveground than for soil-living species. Overall, oribatid mite communities collected in the traps likely originated from the surrounding local habitat suggesting that long distance dispersal of oribatid mites is scarce. Significant differences among seasons indicate higher dispersal during warm and dry periods of the year. Notably, 16 species of oribatid mites collected in our study were sampled for the first time in Sweden. This study also demonstrates that Malaise traps are a meaningful tool to investigate spatial and temporal patterns of oribatid mite communities.

  相似文献   

10.
Erwin’s method for estimating total global species richness assumes some host‐specificity among the canopy arthropods. This study examined possible host habitat specialization in two major groups of soil arthropods, the oribatid and mesostigmatid mites, by sampling beneath three tree species: Eucalyptus pilularis Smith, Eucalyptus propinqua Deane and Maiden and Allocasuarina torulosa (Aiton) L. Johnson. The sample sites were in the Lansdowne State Forest, New South Wales, Australia and the three tree species were selected on the basis of their known differential effects on soil. Sampling was conducted over three seasons, and 79 oribatid and 34 mesostigmatid species were identified from 25 196 and 3634 individuals, respectively. Tree species had little effect on mite species composition with only three oribatid species and no mesostigmatid species identified as host‐habitat specialists using a niche breadth measure. Of mite species found under E. pilularis, E. propinqua and A. torulosa trees, 2%, 1% and 0% were defined as host‐habitat specialists, respectively. In contrast, tree species had significant and consistent effects on mite community structure, which differed in relative abundance of the oribatid species, their size class distributions and species rankings. In the mesostigmatid communities, there was a difference in the ranking of the mite species among tree species. Although it was demonstrated that tree species have an impact on the soil environment, the differences between tree species were insufficient to change species composition. The low degree of host‐habitat specialization suggested that other factors were more important for determining mite species composition at a site, and soil mite host‐habitat specialization may not make a large contribution to estimates of total global species richness using methods such as those proposed by Erwin (1982) .  相似文献   

11.
We determined the effect of ground cover on phytoseiid predatory mite populations and the potential biological control of Panonychus citri (McGregor). Results showed that citrus trees with ground cover contained higher population densities of predatory mites and provided better regulation of P. citri than trees in bare soil. The ground cover Ageratum conyzoides L. performed better than Palspalum notatum Flugge in sheltering phytoseiid mites.  相似文献   

12.
以农田土壤动物长期监测样地为平台, 阐明土壤动物物种和功能多样性空间分布格局, 是揭示农田土壤动物多样性维持机制、提高农田土壤质量的重要基础。本试验于2020年10月, 对河南商丘农田土壤动物大型固定样地(9 ha)的210个采样点进行土壤样品野外采集和室内分离, 将土壤螨样品鉴定到种并测量其体长体宽数据, 以说明小麦-玉米轮作农田土壤螨多样性及其体长体宽的空间分布格局。结果表明: (1)共捕获成螨个体17,256头, 其中甲螨亚目为优势类群, 其个体数占总捕获量的94.67%; MGP分析表明样地甲螨群落属于P型, 说明受人为因素影响强烈; 生态位宽度和重叠度分析表明, 进化程度越高甲螨的生态位宽度越宽, 进化程度越相近甲螨之间的竞争越激烈。(2) Moran’s I分析显示, 在20-100 m的空间尺度上, 土壤螨群落、优势种的个体数和体长体宽多为显著正相关; 在220-300 m的空间尺度上, 部分为显著负的空间自相关。半方差函数结果表明, 甲螨群落物种数、个体数和体长体宽的空间变异主要受确定性过程影响, 中气门螨群落的空间变异由确定性和随机性过程共同影响。(3)土壤螨个体数与体长体宽存在显著弱的负相关关系, 这种关系普遍存在于土壤螨各群落与优势种中。本研究建议同时开展物种多样性和以体长体宽为代表的功能多样性空间格局研究, 对揭示土壤螨群落维持机制、保护土壤螨多样性具有重要意义。  相似文献   

13.
Biological interactions between above-ground and below-ground organisms are not clearly defined among communities with regard to compositional patterns. The study investigates the concordance of species assemblages between vascular plants and oribatid mites and soil chemical properties with special attention to the role of vegetation structure, i.e. tree, shrub and herbaceous cover, for biological components. Data were collected in a Mediterranean coastal Nature Reserve using sampling design based on random selection of plots with cover of stone pine (Pinus pinea L.) exceeding 15%. Agreement of distribution patterns was verified by Spearman’s rank correlation coefficient applied to pairs of matrices of plot scores by principal component analysis (plants, mites and soil) and the Mantel test. The feasible role of vegetation cover on plant and mite assemblages was tested by redundancy analysis (RDA). Significant correlations were found for biological assemblages, indicating congruent plant–mite compositional patterns. On the other hand, the hypothesis of concordance between biological communities and soil was rejected. Moreover, RDA showed that vegetation cover was a driver of both plant and oribatid mite assemblages. In particular, herbaceous cover proved to be a good proxy for the two biological communities investigated, with different taxa linked to forest clearings and to areas with denser tree cover. Our results indicate that soil features were not of primary importance for below-ground and above-ground community assemblages in the study area. In the light of our findings and ongoing threats in coastal areas, we recommend that management measures be directed at maintenance of diversified vegetation structure, which may ensure above-ground and below-ground biodiversity with diverse biological community assemblages.  相似文献   

14.
陈燕南  梁铖  陈军 《生物多样性》2022,30(12):22334-593
在全球环境变化的大背景下, 生物多样性丧失日益加剧。土壤动物作为生物多样性重要组成之一, 受到广泛的关注。位于我国江西省新岗山的亚热带森林生物多样性与生态系统功能实验样地(BEF-China)是全世界25个森林生物多样性控制实验样地之一。本研究自2019年9月至2022年4月在BEF-China两个不同树种组成的样地(A样地和B样地)内采样, 共获得甲螨23,704头, 隶属于34科50属61种。本文分析和对比了两个样地内甲螨群落结构的差异, 及其多度、物种丰富度、Shannon多样性指数的季节性差异; 通过Pearson检验探讨了甲螨多度与环境因子的关系。结果表明: 在A、B两个不同树种组成的森林生态系统内, 土壤甲螨群落结构及其季节动态具有显著差异。具体表现在: A样地奥甲螨科、罗甲螨科、若甲螨科和尖棱甲螨科的相对多度高于B样地; B样地菌甲螨科、盖头甲螨科和礼服甲螨科的相对多度高于A样地。A样地中夏季和秋季甲螨多度、物种丰富度和Shannon多样性指数显著低于春季和冬季; 而B样地中秋季甲螨多度和物种丰富度与春季差异不显著。Pearson检验结果显示, 凋落物木质素含量与单翼甲螨科和菌甲螨科多度呈负相关关系, 而与奥甲螨科多度呈正相关关系。菌甲螨科多度与土壤和凋落物同一理化因子的相关性基本相同(碳氮比除外), 但与凋落物碳氮比呈正相关关系而与土壤碳氮比呈负相关关系。  相似文献   

15.
Oribatid mites may be of epidemiological and medical importance because several species have been shown to serve as intermediate hosts for anoplocephalid tapeworms of wild and domestic animals. Despite their economic and conservation significance, relatively few studies examined factors influencing the effective number of oribatid mites that can serve as intermediate hosts. We examined variation in the structure of the edaphic arthropod community in functionally different territory parts of the Alpine marmot (Marmota marmota latirostris), a known definitive host of a prevalent anoplocephalid tapeworm, Ctenotaenia marmotae. We used a field experiment to test whether the abundance of oribatid mites in marmot pastures is affected by the presence of fresh herbivore faeces. We found that the abundance of soil and litter dwelling oribatid mites in marmot pastures did not change shortly after faeces addition. In contrast, numbers of other predominant soil–litter and phoretic microarthropods increased after faeces addition. The abundance of the two predominant phoretic mites colonizing the faeces was inversely related to the abundance of oribatid mites. In contrast, the abundance of a ubiquitous soil–litter mesostigmatid mite was a positive function of oribatid numbers. Although absolute numbers of oribatid mites did not change after faeces addition, our study suggests that, depending on soil quality or type, the probability of tapeworm egg ingestion by oribatid mites can be reduced due to increased interspecific prey-predatory and trophic interactions. Latrine site selection in Alpine marmots is consistent with a reduced probability of tapeworm transmission by oribatids.  相似文献   

16.
Awesome or ordinary? Global diversity patterns of oribatid mites   总被引:2,自引:0,他引:2  
Diversity of most above-ground organisms increases with decreasing latitude, but the biogeographical and macroecological diversity patterns of below-ground animals have been poorly studied. We investigated the latitudinal diversity gradient in a primarily below-ground living soil taxon, oribatid mites. Furthermore, oribatid mite species richness from islands and mainlainds was tested for correlation with the size of the respective area (island or mainland) to evaluate if their species–area relationships are similar to those of above-ground taxa. The results suggest that for oribatid mites 1) diversity increases from the boreal to the warm temperate region but not further to the tropics, and 2) species–area relationships for islands and mainlands are similar to those of above-ground taxa, but this is mainly caused by very small islands, such as Cocos islands, and very large islands, such as Madagascar. When these islands are excluded the species–area relationship strongly differs from those of typical islands. The results support the view that below-ground animal taxa are generalists that inhabit wide niches. Most small islands have relatively rich oribatid mite faunas, supporting the observation that a large number of species can coexist in a small area (high α-diversity).  相似文献   

17.
Diseases of Mites   总被引:6,自引:0,他引:6  
An overview is given of studies on diseases of mites. Knowledge of diseases of mites is still fragmentary but in recent years more attention has been paid to acaropathogens, often because of the economic importance of many mite species. Most research on mite pathogens concerns studies on fungal pathogens of eriophyoids and spider mites especially. These fungi often play an important role in the regulation of natural mite populations and are sometimes able to decimate populations of phytophagous mites. Studies are being conducted to develop some of these fungi as commercial acaricides.Virus diseases are known in only a few mites, namely, the citrus red mite and the European red mite. In both cases, non-occluded viruses play an important role in the regulation of mite populations in citrus and peach orchards, respectively, but application of these viruses as biological control agents does not seem feasible. A putative iridovirus has been observed in association with Varroa mites in moribund honeybee colonies. The virus is probably also pathogenic for honeybees and may be transmitted to them through this parasitic mite.Few bacteria have been reported as pathogens of the Acari but in recent years research has been concentrated on intracellular organisms such as Wolbachia that may cause distorted sex ratios in offspring and incompatibility between populations. The role of these organisms in natural populations of spider mites is in particular discussed. The effect of Bacillus thuringiensis on mites is also treated in this review, although its mode of action in arthropods is mainly due to the presence of toxins and it is, therefore, not considered to be a pathogen in the true sense of the word.Microsporidia have been observed in several mite species especially in oribatid mites, although other groups of mites may also be affected. In recent years, Microsporidia infections in Phytoseiidae have received considerable attention, as they are often found in mass rearings of beneficial arthropods. They affect the efficacy of these predators as biological control agent of insect and mite pests. Microsporidia do not seem to have potential for biological control of mites.  相似文献   

18.
The ability of soil-living oribatid mites to disperse fungal propagules on their bodies was investigated. Classical plating methods were applied to cultivate these fungi and to study their morphology. Molecular markers were used for further determination. The nuclear ribosomal large subunit and the nuclear ribosomal internal transcribed spacer of DNA extracts of the cultured fungi as well as total DNA extracts of the mites themselves, also containing fungal DNA, were amplified and sequenced. Based on phylogenetic analysis, a total of 31 fungal species from major fungal groups were found to be associated with oribatid mites, indicating that mites do not selectively disperse specific species or species groups. The detected taxa were mainly saprobiontic, cosmopolitan (e.g., Alternaria tenuissima), but also parasitic fungi (Beauveria bassiana) for whose dispersal oribatid mites might play an important role. In contrast, no mycorrhizal fungi were detected in association with oribatid mites, indicating that their propagules are dispersed in a different way. In addition, fungi that are known to be a preferred food for oribatid mites such as the Dematiacea were not detected in high numbers. Results of this study point to the potential of oribatid mites to disperse fungal taxa in soil and indicate that co-evolutionary patterns between oribatid mites and their associated fungi might be rare or even missing in most cases, since we only detected ubiquitous taxa attached to the mites.  相似文献   

19.
The coexistence of a large number of soil animals without extensive niche differentiation is one of the great riddles in soil biology. The main aim of this study was to explore the importance of partitioning of food resources for the high diversity of micro-arthropods in soil. In addition, we investigated if ectomycorrhizal fungi are preferentially consumed compared to saprotrophic fungi. Until today, ectomycorrhizal fungi have never been tested as potential food resource for oribatid mites. We offered six ectomycorrhizal fungi [Amanita muscaria (L.) Hook., Boletus badius (Fr.) Fr., Cenococcum geophilum Fr., Laccaria laccata (Scop.) Fr., Paxillus involutus (Batsch) Fr. and Piloderma croceum J. Erikss. & Hjortstam], one ericoid mycorrhizal fungus [Hymenoscyphus ericae (D.J. Read) Korf & Kernan] and three saprotrophic fungi [Agrocybe gibberosa (Fr.) Fayod, Alternaria alternata (Fr.) Keissl. and Mortierella ramanniana (A. Møller) Linnem.] simultaneously to each of the mainly mycophagous oribatid mite species Carabodes femoralis (Nicolet), Nothrus silvestris Nicolet and Oribatula tibialis Nicolet. The ericoid mycorrhizal fungus H. ericae and the ectomycorrhizal fungus B. badius were preferentially consumed by each oribatid mite species. However, feeding preferences differed significantly between the three species, with O. tibialis being most selective. This study for the first time documented that oribatid mites feed on certain ectomycorrhizal fungi.  相似文献   

20.
《Journal of Asia》2005,8(1):87-91
Overwintering mite diversity and their habitats were studied in apple and pear orchards during 2002-2003 winter season. Twospotted spider mite was mostly found under the tree barks and fabric strips. European red mites were from crevices of twigs. Tydeid, tarsonemid and oribatid mites were mostly from soil and ground vegetation. Even in the protected overwintering habitat such as artificial fabric strip, twospotted spider mite suffered 81-91% mortality during winter. Predaceous phytoseiid mites found were Amblyseius womersleyi, A. makuwa, A. orientalis, A. rademacheri A. obtuserellus, and A. eharai. Amblyseius womersleyi was the most dominant species in both apple and pear orchards, followed by A. obtuserrellus in apple orchards and A. makuwa in pear orchards. Most phytoseiid mites were found on ground vegetation while their potential prey items were remained on the tree. Implication of the findings for conservation of beneficial mites and biological control of spider mite during season was further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号