首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈洪 《人类学学报》2008,27(4):336-343
本例特小颅T1的死者为男性,年龄约40岁,身高168cm,中国人。经颅骨各项指标测量和观察,该颅骨的脑颅特小,尤其是额部特别窄小;而面颅则相对较大,上、下颌骨向前突出。颅骨主要的长、宽、高各径和弧、弦、周长等的测量值均比其他报道中的最小值要小;颅容量为602ml,比已报道的最小颅容量1340ml还要小一倍多,故将其称为特小颅。  相似文献   

2.
近年来,根据三维软件虚拟复原的头骨来获取测量数据的方法被越来越多地应用在古生物,特别是古人类学的研究中,然而对于三维软件不同精度虚拟复原的头骨,其测量数值是否有差异,研究者并不是很清楚。本文以Mimics软件为例,根据其复原模型简化规则,选择未精简的最佳精度模型作为标准进行配对t检验或非参数检验,通过对43例云南人头骨的顶骨矢状弦长、颅周长、头盖部面积、乳突小房表面积、颅容量、乳突小房体积等六个测量项目的对比和分析,对Mimics软件低、中、高、最佳四种精度3D虚拟复原头骨间的测量差异进行了研究。结果显示:颅周长、头盖部面积、颅容量、乳突小房体积四项的所有简化精度模型的测量数据均与最佳精度模型测量数据的差异具有显著性;而除高精度组外,顶骨矢状弦长及乳突小房表面积的其余精度组测量数据均与最佳精度组差异具有显著性;此外,顶骨矢状弦长、颅周长、头盖部面积、颅容量的简化精度与最佳精度的测量差异占比均小于3%.而乳突小房表面积的低精度与最佳精度测量差异占比可超过50%,乳突小房体积的低精度与最佳精度测量差异占比可超过120%。这一结果提示我们,在测量Mimics复原的三维模型时,体量大差异小的测量项可以在较低精度的复原模型上进行测量;而对头骨内部腔窦这样体量小表面粗糙的结构,复原模型的精度选择及测量数据比较需要格外谨慎。  相似文献   

3.
Allometric patterns of skull‐shape variation can have significant impacts on cranial mechanics and feeding performance, but have received little attention in previous studies. Here, we examine the impacts of allometric skull‐shape variation on feeding capabilities in the cat family (Felidae) with linear morphometrics and finite element analysis. Our results reveal that relative bite force diminishes slightly with increasing skull size, and that the skulls of the smallest species undergo the least strain during biting. However, larger felids are able to produce greater gapes for a given angle of jaw opening, and they have overall stronger skulls. The two large felids in this study achieved increased cranial strength by increasing skull bone volume relative to surface area. Allometry of skull geometry in large felids reflects a trade‐off between the need to increase gape to access larger prey while maintaining the ability to resist unpredictable loading when taking large, struggling prey.  相似文献   

4.
下斜坡、枕大孔前缘、颈静脉孔区及脑干腹侧的病变,一直以来这些区域的手术难度高,风险极大。由于周围毗邻解剖关系复杂,对于神经外科医生是一个巨大的挑战,枕下远外侧入路是到达上述区域比较理想的入路之一,它包括:1)沿颅颈交界区后外侧面分离肌肉,充分暴露C1横突和枕下三角;2)今早在寰椎后弓上方和或寰椎和枢椎动脉;3)行枕下颅骨切除术或枕下开颅术,并切除至少半个寰椎后弓。这一入路提供了以下三个入路的通道:经髁入路的方向经过枕髁或寰枕关节和邻近的髁部;髁上入路的方向经过枕髁上方的区域;髁旁入路的方向经过枕髁外侧区域。它的路径短,适合于颅颈交界区域的多种病变,可以较早地辨认与保护椎动脉,并可以根据手术的具体要求选择磨除枕髁的多少以及周围的骨性结构,以期达到良好的术野。  相似文献   

5.
The aim of this study was to analyse the precision of three-dimensional joint surface and cartilage thickness measurements in the knee, using a fast, high-resolution water-excitation sequence and a semiautomated segmentation algorithm. The knee joint of 8 healthy volunteers, aged 22 to 29 years, were examined at a resolution of 1.5 mm x 0.31 mm x 0.31 mm, with four sagittal data sets being acquired after repositioning the joint. After semiautomated segmentation with a B-spline Snake algorithm and 3D reconstruction of the patellar, femoral and tibial cartilages, the joint surface areas (triangulation), cartilage volume, and mean and maximum thickness (Euclidean distance transformation) were analysed, independently of the orientation of the sections. The precision (CV%) for the surface areas was 2.1 to 6.6%. The mean cartilage thickness and cartilage volume showed coefficients of 1.9 to 3.5% (except for the femoral condyles), the value for the medial femoral condyle being 9.1%, and for the lateral condyle 6.5%. For maximum thickness, coefficients of between 2.6 and 5.9% were found. In the present study we investigate for the first time the precision of MRI-based joint surface area measurements in the knee, and of cartilage thickness analyses in the femur. Using a selective water-excitation sequence, the acquisition time can be reduced by more than 50%. The poorer precision in the femoral condyles can be attributed to partial volume effects that occur at the edges of the joint surfaces with a sagittal image protocol. Since MRI is non-invasive, it is highly suitable for examination of healthy subjects (generation of individual finite element models, analysis of functional adaptation to mechanical stimulation, measurement of cartilage deformation in vivo) and as a diagnostic tool for follow-up, indication for therapy, and objective evaluation of new therapeutic agents in osteoarthritis.  相似文献   

6.
Extant members of the cat family (Felidae) have been considered behaviourally and morphologically conservative, i.e., despite great differences in size, there is relatively little variation in either the shape of the felid skull and dentition across species, or in the way in which these structures are used to kill and dismember prey. Consequently felids have been considered an appropriate focus for a number of investigations into the influence of allometry on craniomandibular mechanics and morphology. However, although previous treatments have considered the role of shape, they have not investigated the influence of differences in the distribution of relatively stiff cortical and more compliant cancellous bone on performance. Here, using models that incorporate material properties for both cortical and cancellous bone, we apply three-dimensional (3D) finite element analysis (FEA) to models representing the skulls of seven extant felid species. Our objectives being to determine allometric trends regarding both overall geometry and the relative distributions of cortical and cancellous bone tissue. We also more comprehensively assess variation in the efficiency with which muscular force is converted to bite force and the capacity to resist associated stresses. Our results show that the cheetah (Acinonyx jubatus) may be exceptional regarding both the efficiency with which muscular force is converted to bite force and the distribution of stress. We found a negative allometric trend between cortical bone volume and total skull bone volume, and positive allometry between the total skull bone volume and skull surface area. Results gained from mathematical modelling of beam analogies suggest that these trends reflect a need for larger species to respond to physical challenges associated with increased size, and, that changes in skull shape, bone composition, or a combination of both may be required to accommodate these challenges. With geometrical scaling stress increases by the same factor, and displacement by the same factor squared, but the ultimate failure stress of the material is invariant. We find that as species become larger, overall skull bone volume relative to surface area increases by adding a higher proportion of less dense and more compliant cancellous bone. This results in an increased cross-sectional area and second moment of inertia, which acts to reduce the overall stresses. An overall saving in mass is a likely additional consequence. Although we do find evidence that skull stiffness does diminish with size, we also argue that this is at least in part mitigated through the influence of these allometric trends. We further suggest that these trends and the explanations for them may be universal for vertebrates.  相似文献   

7.
Size and shape of the mandibular condyle in primates   总被引:4,自引:0,他引:4  
The relationships between the size of the articular surface of the mandibular condyle and masticatory muscle size, tooth size, diet, and biomechanical variables associated with mastication were studied by taking 12 measurements on skulls of 253 adult female anthropoid primates, including three to ten specimens from each of 32 species. In regressions of condylar length, width, or area against body weight, logarithmic transformations substantially improve the fit of the equations compared with untransformed data. There is a strong relationship between condylar measurements and body weight, with all correlations being .94 or higher. The slopes of the allometric regressions of length, width, and area of the condylar head indicate slight positive allometry with body size. Folivorous primates have smaller condyles than frugivorous primates, and colobines have smaller condyles than cebids, cercopithecines, or hominoids. When colobines are eliminated, the differences between frugivores and folivores are not significant. However, the two species with the relatively largest condyles are Pongo pygmaeus and Cercocebus torquatus, suggesting that there may be a relationship between unusually large condylar dimensions and the ability to crack hard nuts between the teeth. Cranial features having strong positive correlations with condylar dimensions include facial prognathism, maxillary incisor size, maxillary postcanine area, mandibular ramus breadth, and temporal fossa area. These data are interpreted as indicating that relatively large condyles are associated with relatively large masticatory muscles, relatively inefficient mandibular biomechanics, and a large dentition. These relationships support the growing evidence that the temporomandibular joint is a stress-bearing joint in normal function.  相似文献   

8.
Sex differences are present in all parts of the body, including the skeletal system. Several methods are used to analyze the sex differences of skeleton, while more recently, a new method called geometric morphometry has been used. The aim of this study was to examine the sexual dimorphism of occipital condyles on human skulls originating from the population of Bosnia and Herzegovina using the geometric morphometric method.Material and methodsThe study was conducted on 214 human skulls of known gender from Bosnian population. For analysis of sexual dimorphism of occipital condyles, we used geometric morphometry, where all the skulls were scanned to obtain three-dimensional skull models. On the obtained models, we marked anthropometric points on occipital condyles in a Landmark Editor program from which we exported data in the form NTSYS file and analyzed it in MorphoJ program.ResultsFirst principal component PC1 describes 26.917% of total variability, the second principal component PC2 describes 20.992% of total variability, while the first eight principal components together describe 100% of total variability. The greatest variability between the male skulls and female skulls was present in the anterior-posterior diameter (length of occipital condyles). Discriminant functional analysis of the shape and size of the occipital condyles was possible with 69.50% accuracy for male skulls and with 60.27% accuracy for female skulls. The size of the occipital condyles showed a statistically significant effect on sexual determination. Discriminant functional analysis of the shape of the occipital condyles without affecting size enabled the determination of gender with with 65.96% accuracy for male skulls and with 63.01% accuracy for female skulls.ConclusionAnalysis of sexual dimorphism of occipital condyles using geometric morphometry showed statistically significant differences in the shape and size of occipital condyles between the sexes. The accuracy of sex determination based on occipital condyles was higher for male gender.  相似文献   

9.
Twenty-one patients with gigantic defects of the scalp and middle third of the face and palate following excision of neglected or recurrent tumors, burns, and infections have undergone microsurgical reconstruction. Wide resection of the middle third of the face, orbit, and palate requires "complex" three-dimensional volume reconstruction, whereas extensive defects of the scalp and skull (exceeding 80 cm2) require coverage of the larger surface area soft-tissue defect and the exposed brain and dura. The latissimus dorsi free-muscle flap and split-thickness skin graft have become our methods of choice for extensive scalp and skull defects. The latissimus dorsi musculocutaneous free flap is preferable for reconstruction of complex palatal and external skin and orbital defects of the middle third of the face. Microsurgical free-tissue transfer reliably frees the oncologic surgeon from the constraints imposed by conventional reconstructive techniques and may therefore allow improved curative or at least palliative resection of these extensive tumors.  相似文献   

10.
The mandibular condyle is considered a good model for developing cancellous bone because of its rapid growth and high rate of remodeling. The aim of the present study was to analyze the simultaneous changes in microarchitecture and mineralization of cancellous bone during development in a three-dimensional fashion. Eight mandibular condyles of pigs aged 8 weeks prepartum to 108 weeks postpartum were scanned using microCT with an isotropic spatial resolution of 10 microm. The number of trabeculae decreased during development, whereas both the trabecular thickness and the distance between the trabeculae increased. The bone surface to volume ratio decreased during development, possibly limiting the amount of (re)modeling. Both the mean degree of mineralization and intratrabecular differences in mineralization between the surfaces and cores of trabecular elements increased during development. The trabecular surfaces were more highly mineralized in the older condyles compared to the younger ones. Together with the observed decrease in the relative size of trabecular surface, this finding suggests a decrease in (re)modeling activity during development. In accordance with the general growth and development of the pig, it was concluded that most developmental changes in cancellous bone occur until the age of 40 weeks postpartum.  相似文献   

11.
The Carnivora occupy a wide range of feeding niches in concordance with the enormous diversity in their skull and dental form. It is well established that differences in crown morphology are linked to variations in the material properties of the foods ingested and masticated. However, how tooth root form is related to dietary specialization is less well known. In the present study, we investigate the relationship between tooth root morphology and dietary specialization in terrestrial carnivores (canids, felids, hyaenids, and ursids). We specifically address the question of how variation in tooth root surface area is related to bite force potentials as one of the crucial masticatory performance parameters in feeding ecology. We applied computed tomography imaging to reconstruct and quantify dental root surface area in 17 extant carnivore species. Moreover, we computed maximal bite force at several tooth positions based on a dry skull model and assessed the relationship of root surface area to skull size, maximal bite force, food properties, and prey size. We found that postcanine tooth root surface areas corrected for skull size serve as a proxy for bite force potentials and, by extension, dietary specialization in carnivores. Irrespective of taxonomic affinity, species that feed on hard food objects have larger tooth roots than those that eat soft or tough foods. Moreover, carnivores that prey on large animals have larger tooth root surface areas. Our results show that tooth root morphology is a useful indicator of bite force production and allows inferences to be made about dietary ecology in both extant and extinct mammals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 456–471.  相似文献   

12.
The study of four cloverleaf skulls (two fetuses, one infant, and a young adult) concerns two Pfeiffer syndromes, a thanatophoric dysplasia and an isolated case. Clinical and radiologic examinations showed malformations at the level of the calvarium, the base, orbital cavities, and, sometimes, limb abnormalities. Correlations between these findings and the microradiographic analysis of nondemineralized sections elucidate this trilobular appearance of the skull. Premature temporoparietal suture closure terminates at a constricted surface of the lateral sides of the skull during the fetal life. Extension of the synostosis to coronal and frontal sutures and thickening of the occipital bone squama block lengthening of the skull. The consecutive reduction in skull volume is compensated by the maintenance of the permeability during the neonatal period of the sagittal and lambdoid sutures. Microradiographic examination shows that this anomaly may be of vascular origin and associated with abnormal osteoclastic resorption.  相似文献   

13.
M Bouvier  M L Zimny 《Acta anatomica》1987,129(4):293-300
Mechanical loads on the condylar cartilage were varied by feeding either a hard diet, a soft diet, or a sequential combination of a soft diet followed by a hard diet to young male and female rats for a total period of 4 weeks, and to mature male rats for 12 weeks. Gross condylar dimensions were greatest in the hard-diet groups, intermediate in the combination soft/hard-diet groups, and smallest in the soft-diet groups. Scanning electron microscopy of the condyle revealed a smooth, nonporous articular surface in the soft-diet groups. Hard-diet condyles had a rougher, more porous articular surface while soft/hard-diet condyles were intermediate between nonporous and slightly roughened condyles. None of the condyles showed ridges or elevations on the articular surface. Sex, age and time of the diets did not significantly affect these results.  相似文献   

14.
A technique is described for finding the pineal body of the dog. The posterior half of the skull is cut a little behind the parietofrontal suture, through the occipital condyles. The cerebral hemispheres and cerebellum are carefully sliced, disclosing the pineal at the frontal edge of the colliculi. Two types of cells are present, those with completely round nuclei, and others with vesicular and variably shaped nuclei. In the histological pattern, ependymal cells were observed on the edges, pinealocytes and glial cells within the gland.  相似文献   

15.
There is a direct correlation between ligament function and the articulating surface of the normal knee, and changes to any of these structures can affect the other. This is also true for knee replacements, where the articulating surface is greatly changed compared to the natural knee. This study investigated the morphometry of healthy knees and proposes a method to predict original normal knee profiles. A variety of mathematical techniques are compared in terms of the accuracy with which they can represent the original knee joint geometry. Additionally, a method of predicting the irregular femoral condyle geometry for an individual knee is described by making use of the mathematical techniques presented, and the accuracy of this method is also investigated. The mathematical approach using B-splines provides flexibility and can accurately describe the complex geometry of the femoral condyles in both the sagittal and transverse planes. It was further found that the condyles are highly asymmetrical; therefore simpler methods cannot portray the condyles sufficiently and are especially inaccurate in representing the lateral condyle. The study proposes a method for predicting the geometry of the femoral condyles with good accuracy. The B-spline model showed best results.  相似文献   

16.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   

17.
樟子松人工林树冠表面积及体积预估模型的研究   总被引:1,自引:1,他引:0  
廖彩霞  李凤日 《植物研究》2007,27(4):478-483
基于樟子松(Pinus sylvestris var. mongolica)人工林6块固定标准地30株枝解析数据,在分析树冠表面积和树冠体积与林分变量和林木变量的基础上,利用幂函数建立了树冠表面积(CSA)和树冠体积(CV)的预估模型,同时还对林木材积生长量与CSA和CV进行了相关分析。研究结果表明:樟子松人工林树冠表面积和树冠体积随着林木胸径、树高和冠长的增大而增大,林木材积生长量与树冠表面积和树冠体积均明显呈线性关系。不同林分条件的樟子松人工林CSA和CV随林分年龄和胸径的增大而增大,CSA随林分密度的增大而减小,而CV与林分密度相关不紧密。林分树冠表面积和树冠体积预估模型的检验结果表明,两个模型的平均相对误差都在±8%之内,预估精度均大于91%,说明所建模型可以很好地预估樟子松人工林不同林分条件下的林木树冠表面积和树冠体积。  相似文献   

18.
Intracranial volume and intracranial pressure have been measured in 66 children with craniosynostosis, 48 boys and 18 girls. The premature fusion of skull sutures is assumed to restrict skull growth and predispose to elevated intracranial pressure. Thirteen children (20 percent) had raised intracranial pressure and demonstrated a significant restriction of skull growth. In this series, volume measurement alone, however, did not serve as a reliable predictor that the intracranial pressure was raised.  相似文献   

19.
The values of the human skull circumference measured in the plane of its greatest length and that of the ellipsis determinated by the semiaxis a, the half largest length of the skull, and the semiaxis b, the half largest breadth, prove a high correlation which is neither dependent on the skull form nor size. The difference between the circumference of the skull and the ellipsis amount only a few % and correlates to the skull form. The areas of intersection of the skull and the area of the ellipsis correspond entirely. Samples of non-human primates show the skull in all Haplorhini being also adjustet to the area of the ellipsis, but the correlation is not so good as in human objects and is depending on the species. The morphological difference is caused by the skull contour-lines passing under and over the ellipsis to the same amount without changing the quantitative ratio of the skull area to the ellipsis area.  相似文献   

20.
The purpose of the study was to compare indentation modulus (IM) and hardness of condylar bone in young and adult dogs. In addition we desired to examine histologic sections for bone formation activity in the two groups. Mandibular condyles were obtained from adult (1- to 2-year-old) and young (approximately 5-m old) dogs. Two sections/condyle were obtained and one was processed for histomorphometry and the other for mechanical analyses. Indents were made on moist condylar trabecular bone to a depth of 500 nm at a loading rate of 10 nm/s using a custom-made hydration system to obtain IM and hardness. Histomorphometric analyses measured the bone volume/total volume (BV/TV%) and ratio of labeled to unlabeled bone within the condyle. Data were analyzed using a repeated-measures factorial analysis of variance and Tukey-Kramer method. Overall, the IM of the adult condyles (10.0+/-3.4 GPa, Mean+/-SD) were significantly (P<0.0001) higher than in young dogs (5.6+/-2.6 GPa). There was a greater bone mass in the young (60.2%) versus the adult condyles (42%). Also, significantly more labeled bone in the young (66.1%) condylar bone suggested higher bone forming activity than in adult condyles (27.5%). With age there is a change in mass and material properties in the trabecular bone of the mandibular condyle in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号