首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The building up of the cell wall is tightly dependent on the functionality of the secretory pathway. Syntaxins as well as other SNARE proteins play important roles during vesicle secretion and fusion. We have compared the secretion of newly synthesised cell-wall polysaccharides to that of secretory marker proteins such as secreted green-fluorescent protein (secGFP) and secreted rat preputial β-glucuronidase (secRGUS) in leaf protoplasts and roots of wild-type and transgenic Nicotiana tabacum plants, overexpressing a syntaxin homologue NtSyr1 (Sp1) and its soluble variant Sp2 that interferes specifically with Sp1 function, affecting post-Golgi transport. In protoplasts transiently transformed with secGFP and Sp1, no variation was observed in the pattern of fluorescence with respect to control; on the contrary, GFP fluorescence accumulate within the cells in protoplasts co-transformed with secGFP and Sp2. Sp2 reduced the percentage of marker protein secretion to 53% as quantified with secRGUS. In protoplasts obtained from leaves of wild-type and transformed tobacco plants expressing Sp1, Sp2 and Sp1 plus Sp2, no remarkable differences in the percentage of newly synthesised polysaccharides incorporated into the regenerating cell walls were observed. The same results were confirmed in roots of whole transformed seedlings. Tests with cytochalasin D (CD) showed a marked decrease in the amount of newly synthesised polysaccharides into the wall and a simultaneous sharp increase in membrane-associated polysaccharides. SecRGUS secretion was also inhibited by CD. The data indicate that marker proteins and matrix polysaccharides, as well as cellulose synthase complexes, are secreted through the involvement of different secretory machineries. Maria Rosaria Leucci and Gian-Pietro Di Sansebastiano contribute equally to this work. Giuseppe Dalessandro and Gabriella Piro wish to dedicate this work to the memory of Professor Don Northcote.  相似文献   

2.
Syntaxins and other SNARE (soluble NSF-attachment protein receptor) complex proteins play a key role in the cellular processes of vesicle trafficking, vesicle fusion and secretion. Intriguingly, the SNARE NtSyr1 (=NtSyp121) from Nicotiana tabacum also appears to have a role in signalling evoked by the plant stress hormone abscisic acid. However, partner proteins contributing to its function(s) remain unknown. We used an affinity chromatography approach to identify proteins from tobacco leaf microsomes that directly interact with the hydrophilic (cytosolic) domains of NtSyr1 and report several interacting proteins with sensitivities to the endopeptidase activity of Clostridium botulinum neurotoxins, including one protein that was recognised by alphaAtSNAP33 antiserum, raised against the Arabidopsis SNAP25 homologue. Treatment of microsomal membrane fractions indicated a protein near 55 kDa was sensitive to proteolysis by BotN/A and BotN/E, yielding degradation products of approximately 34 and 23 kDa. Expressed and purified AtSNAP33 also bound directly to the cytosolic domain of NtSyr1 and was sensitive to proteolysis by these toxins, suggesting that NtSyr1, a tobacco homologue of AtSNAP33, and coordinate SNAREs are likely to associate as partners for function in vivo.  相似文献   

3.
Kim H  Park M  Kim SJ  Hwang I 《The Plant cell》2005,17(3):888-902
Actin filaments are thought to play an important role in intracellular trafficking in various eukaryotic cells. However, their involvement in intracellular trafficking in plant cells has not been clearly demonstrated. Here, we investigated the roles actin filaments play in intracellular trafficking in plant cells using latrunculin B (Lat B), an inhibitor of actin filament assembly, or actin mutants that disrupt actin filaments when overexpressed. Lat B and actin2 mutant overexpression inhibited the trafficking of two vacuolar reporter proteins, sporamin:green fluorescent protein (GFP) and Arabidopsis thaliana aleurain-like protein:GFP, to the central vacuole; instead, a punctate staining pattern was observed. Colocalization experiments with various marker proteins indicated that these punctate stains corresponded to the Golgi complex. The A. thaliana vacuolar sorting receptor VSR-At, which mainly localizes to the prevacuolar compartment, also accumulated at the Golgi complex in the presence of Lat B. However, Lat B had no effect on the endoplasmic reticulum (ER) to Golgi trafficking of sialyltransferase or retrograde Golgi to ER trafficking. Lat B also failed to influence the Golgi to plasma membrane trafficking of H+-ATPase:GFP or the secretion of invertase:GFP. Based on these observations, we propose that actin filaments play a critical role in the trafficking of proteins from the Golgi complex to the central vacuole.  相似文献   

4.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations.  相似文献   

5.
Green fluorescent protein (GFP) is an attractive reporter for bioprocess monitoring. Although expression of GFP in plants has been widely reported, research on the use of GFP in plant cell cultures for bioprocess applications has been limited. In this study, the suitability of GFP as a secretory reporter and a useful tool in plant cell bioprocess optimization was demonstrated. GFP was produced and secreted from suspension cells derived from tobacco that was transformed with a binary vector containing mgfp5-ER cDNA, a modified GFP for efficient sorting to the endoplasmic reticulum, under control of the CaMV 35S promoter. For cell line gfp-13, extracellular and intracellular GFP accumulated to 15.4 and 29.4 mg x 1(-1), respectively. Extracellular GFP accounted for 30.9% of the total extracellular protein. The molecular mass of extracellular GFP was nearly identical to that of a recombinant GFP standard, indicating cleavage of the signal sequence. Neomycin phosphotransferase II, a cytosolic selection marker, was found almost exclusively in cellular extracts with less than 2% in the extracellular medium. These results suggest that extracellular GFP is most likely the result of secretion rather than nonspecific leakage from cells. Furthermore, medium fluorescence intensity correlated nicely with extracellular GFP concentration supporting the use of GFP as a quantitative secretory reporter. During the batch cultivation, culture GFP fluorescence also followed closely with cell growth. A medium feeding strategy was then developed based on culture GFP fluorescence that resulted in improved biomass as well as GFP production in a fed-batch culture.  相似文献   

6.
Exocytosis molecular mechanisms in plant cells are not fully understood. The full characterization of molecular determinants, such as SNAREs, for the specificity in vesicles delivery to the plasma membrane should shed some light on these mechanisms. Nicotiana tabacum Syntaxin 1 (NtSyr1 or SYP121) is a SNARE protein required for ABA control of ion channels and appears involved in the exocytosis of exogenous markers.NtSyr1 is mainly localized on the plasma membrane, but when over expressed the protein also appears on endomembranes. Since NtSyr1 is a tail-anchored protein inserted into the target membrane post-translationally, it is not clear whether its initial anchoring site is the ER or the plasma membrane.In this study, we investigated the sorting events of NtSyr1 in vivo using its full-length cDNA or its C-terminal domain, fused to a GFP tag and transiently expressed in protoplasts or in the leaves of Nicotiana tabacum cv. SR1. Five chimeras were produced of which two were useful to investigate the protein sorting within the endomembrane system. One (GFP-H3M) had a dominant negative effect on exocytosis; the other one (SP1-GFP) resulted in a slow targeting to the same localization of the full-length chimera (GFP-SP1). The insertion of signal peptides on SP1-GFP further characterized the insertion site for this protein. Our data indicates that NtSyr1 is firstly anchored on ER membrane and then sorted to plasma membrane.Key Words: syntaxins, SNAREs, GFP tagging, exocytosis, secretion, protoplasts, dominant negative mutant  相似文献   

7.
The modified Cry l Ac was expressed in transgenic tobacco plants. To allow secretion of the CrylAc protein into the intercellular space, the signal peptide sequence of potato proteinase inhibitor II (pinII) was N-terminally fused to the CrylAc encoding region. Expression of Cry 1 Ac in transgenic tobacco plants was assayed with ELISA. The results showed that pinII signal peptide sequence enhanced the expression of Cry lAc protein and led to the secretion of the Cry 1 Ac protein in transgenic tobacco plants. GFP gene was also fused to the signal peptide sequence and transformed to tobacco. The results of fluorescent detection showed that GFP had localized in the apoplast of transgenic plants.  相似文献   

8.
Calnuc is an ubiquitous, EF-hand Ca(2+) binding protein found in the cytoplasm where it binds to Galphai3, in the Golgi lumen where it constitutes a Ca(2+) storage pool, and secreted outside the cell. Here we investigated the pathway of secretion of calnuc in AtT20 cells. We found by pulse-chase experiments that calnuc is synthesized in the endoplasmic reticulum, transported to the Golgi where it remains greater than 12 h and undergoes posttranslational modification (O-glycosylation and sulfation) followed by secretion into the culture medium. We examined if calnuc is secreted by the constitutive or regulated secretory pathway in AtT20 cells. By immunofluorescence and immunogold labeling, endogenous calnuc is found in immature secretion granules (ISG) but not mature regulated secretory granules (RSG), whereas overexpressed calnuc-green fluorescent protein (GFP) is found in both ISG and RSG, where it colocalizes with ACTH. Neither calnuc nor calnuc-GFP are released by the regulated secretory pathway, suggesting that endogenous calnuc and calnuc-GFP are progressively removed from ISG and RSG during granule maturation. We conclude that calnuc is secreted via the constitutive-like pathway and represents a useful endogenous marker for this pathway in AtT20 cells. Together, these observations indicate that calnuc has a unique itinerary as it is retained in the Golgi and is then constitutively secreted extracellularly where it may influence cell behavior via its Ca(2+)-binding properties.  相似文献   

9.
Vesicle traffic underpins cell homeostasis, growth and development in plants, and is facilitated by a superfamily of proteins known as SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors] that interact to draw vesicle and target membrane surfaces together for fusion. Structural homologies, biochemical and genetic analyses have yielded information about the localization and possible roles of these proteins. However, remarkably little evidence is yet available that speaks directly to the functional specificities of these proteins in selected trafficking pathways in vivo. Previously, we found that expressing a cytosolic (so-called Sp2) fragment of one plasma membrane SNARE from tobacco and Arabidopsis had severe effects on growth, tissue development and secretory traffic to the plasma membrane. We have explored this dominant-negative approach further to examine the specificity and overlaps in Sp2 activity by generating a toolbox of truncated SNARE constructs and antibodies for transient expression and analysis. Using a quantitative ratiometric approach with secreted green fluorescent protein (secGFP), we report here that traffic to the plasma membrane is suppressed selectively by Sp2 fragments of plasma membrane SNAREs AtSYP121 and AtSYP122, but not of the closely related SNARE AtSYP111 nor of the SNARE AtSYP21 that resides at the pre-vacuolar compartment (PVC). By contrast, traffic of the YFP-tagged aquaporin fusion protein TIP1;1-YFP to the tonoplast was blocked (leading to its accumulation in the PVC) when co-expressed with the Sp2 fragment of AtSYP21, but not when co-expressed with that of AtSYP121. Export of secGFP was also sensitive to the Sp2 fragment of the novel, plant-specific SNARE AtSYP71 that was recently found to be present in detergent-resistant, plasma membrane fractions. Co-incubation analyses of the plasma membrane SNAREs with the regulatory subdomain included within the Sp2 fragments showed activity in destabilizing protein complexes, but only with the complementary SNAREs. We conclude that the Sp2 fragment action accurately reflects the known specificity and targeting of these SNAREs, implies functional overlaps that are of potential physiological interest, and underscores the use of a dominant-negative strategy in functional studies of a major subfamily of SNAREs in plants.  相似文献   

10.
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.  相似文献   

11.
Insect-resistant plants have been developed throughexpression of insecticidal proteins from Bacillusthuringiensis (Bt) in the early 1980s [1,2]. However, forcontrol of insect pests, it is necessary to increase theexpression of Bt protein overall or in specific plant tissues.To increase the expression level, synthetic Bt genes havebeen developed and used to produce transgenic plants[2–5]. A number of approaches have been taken to increasethe expression level of foreign proteins in transgeni…  相似文献   

12.
Recent findings indicate that proteins in the SNARE superfamily are essential for cell signaling, in addition to facilitating vesicle traffic in plant cell homeostasis, growth, and development. We previously identified SNAREs SYP121/Syr1 from tobacco (Nicotiana tabacum) and the Arabidopsis thaliana homolog SYP121 associated with abscisic acid and drought stress. Disrupting tobacco SYP121 function by expressing a dominant-negative Sp2 fragment had severe effects on growth, development, and traffic to the plasma membrane, and it blocked K(+) and Cl(-) channel responses to abscisic acid in guard cells. These observations raise questions about SNARE control in exocytosis and endocytosis of ion channel proteins and their organization within the plane of the membrane. We have used a dual, in vivo tagging strategy with a photoactivatable green fluorescent protein and externally exposed hemagglutinin epitopes to monitor the distribution and trafficking dynamics of the KAT1 K(+) channel transiently expressed in tobacco leaves. KAT1 is localized to the plasma membrane within positionally stable microdomains of approximately 0.5 microm in diameter; delivery of the K(+) channel, but not of the PMA2 H(+)-ATPase, to the plasma membrane is suppressed by Sp2 fragments of tobacco and Arabidopsis SYP121, and Sp2 expression leads to profound changes in KAT1 distribution and mobility within the plane of the plasma membrane. These results offer direct evidence for SNARE-mediated traffic of the K(+) channel and a role in its distribution within subdomains of the plasma membrane, and they implicate a role for SNAREs in positional anchoring of the K(+) channel protein.  相似文献   

13.
14.
ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLSICK1 could transport the much larger GUS (β-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLSICK1 is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK11–162 that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA.  相似文献   

15.
The secretory pathway is important in actively transporting proteins into the extracellular environment of eucaryotic cells. In this study a green fluorescent protein (GFP) mutant engineered to contain a secretion signal was used as a model protein in order to visualize the secretion process inside insect cells. Fluorescent microscopy indicated that significant amounts of secreted green fluorescent protein (sGFP) accumulated in High-Five, Trichoplusia ni, cells following infection with a baculovirus vector containing the gene under the polyhedrin promoter. Laser scanning confocal microscopy was used to reconstruct whole cell images of the infected High-Five cells at multiple days postinfection. While the protein was widely distributed at 2 days postinfection, certain intracellular regions appeared to contain higher or lower concentrations of the sGFP. A layer by layer examination indicated pockets in which sGFP was absent, and these appear to be vesicles that have recently released the sGFP or are not yet accumulating sGFP. By 3 days postinfection, the sGFP in some cells was concentrated in a number of widely dispersed globules, which may represent the vesicle remnants of a deteriorating secretory pathway. In contrast, nonsecreted GFP was more uniformly distributed in the cells than sGFP and did not accumulate in vesicles. In addition to GFP, the lectins wheat germ agglutinin (WGA) and concanavalin A (ConA), which have affinities for sugar residues, were used to examine the secretory pathway. The WGA, which is a Golgi marker, was distributed around the nucleus prior to infection but then was found to be polarized in one region of the cell following the baculovirus infection. The expansion of other cellular compartments following the baculovirus infection may have caused a change in intracellular distribution of the Golgi. While some of the sGFP was found to colocalize with the WGA label, much of the sGFP was outside this Golgi region. In contrast, ConA labeling, which was not as specific as WGA, was found throughout the cell both before and after infection similar to the sGFP distribution. These studies demonstrate that confocal visualization of fluorescent proteins can be used as an in vivo tool for examining secretory processing in insect cells.  相似文献   

16.
Plasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein. When fused to green fluorescent protein (GFP) and expressed in tobacco (Nicotiana tabacum) or Nicotiana benthamiana epidermal cells, this protein displays fluorescence patterns in the endoplasmic reticulum (ER) membrane system, along the cell periphery and in a punctate pattern that co-localizes with aniline blue-stained callose present around the Pd. Plasma membrane localization was verified by co-localization of AtBG_ppap:GFP together with a plasma membrane marker N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) in plasmolysed cells. In Arabidopsis T-DNA insertion mutants that do not transcribe AtBG_ppap, functional studies showed that GFP cell-to-cell movement between epidermal cells is reduced, and the conductivity coefficient of Pd is lower. Measurements of callose levels around Pd after wounding revealed that callose accumulation in the mutant plants was higher. Taken together, we suggest that AtBG_ppap is a Pd-associated membrane protein involved in plasmodesmal callose degradation, and functions in the gating of Pd.  相似文献   

17.
The plant hormone abscisic acid (ABA) participates in the control of several important physiological processes in plants such as stomata regulation, seed dormancy and stress tolerance. A new strategy was developed to study these phenomena by blocking abscisic acid with intracellularly expressed specific single-chain variable fragment (scFv) antibodies. Here evidence is presented that the expression of single-chain Fv antibodies against abscisic acid in the endoplasmic reticulum of transgenic tobacco cells leads to a wilty phenotype. Stomatal conductance is increased at high CO2 concentrations dependent on the level of antibody expression in leaves. Symptoms of abscisic acid deficiency were generated in the transformants although they have even higher levels of abscisic acid than wild-type plants.  相似文献   

18.
Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 μM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y(13). Overexpression of P2Y(13) increases cellular LC3-II levels by ~50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y(13) protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y(13) gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y(13) expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y(13) expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y(13), ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion.  相似文献   

19.
At the onset of mitosis, the Golgi apparatus, which consists of several cisternae, disperses throughout the cell to be partitioned into daughter cells. The molecular mechanisms of this process are now beginning to be understood. To investigate the biochemical requirements and kinetics of mitotic Golgi membrane dynamics in polarized cells, we have reconstituted the disassembly of the Golgi apparatus by introducing Xenopus egg extracts into permeabilized Mardin-Darby canine kidney (MDCK) cells. We used green fluorescence protein (GFP)-tagged galactosyltransferase-expressing MDCK cells to analyze the morphological changes of the Golgi membrane in the semi-intact system. Analyses by fluorescence and electron microscopies showed that the Golgi disassembly can be dissected into two elementary processes morphologically. In the first process, the perinuclear Golgi stacks break into punctate structures, intermediates, which are comprised of mini-stacks of cisternae associating with apical microtubule networks. In the second process, the structures fragment more thoroughly or substantially relocate to the ER. Our analyses further showed that cdc2 kinase and mitogen-activated protein kinase kinase (MAPKK = MEK) are differently involved in these two processes: the first process is mainly regulated by MEK and the second mainly by cdc2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号