首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly.  相似文献   

2.
Mouse mammary epithelial cells cultivated on floating collagen gels secrete, as judged by immunoblotting, the full array of caseins found in mouse milk. The secreted caseins are all phosphorylated and have estimated minimum molecular weights (MWs) of 45, 40, 27, and 23 kD in SDS-PAGE. Intracellular caseins of epithelia from collagen gel cultivation or from lactating mammary glands are a combination of mature caseins identical with the secreted molecules and novel caseins whose apparent size in SDS-PAGE is different from the secreted molecules. The novel caseins were shown to be non-phosphorylated species apparently insufficiently mature for secretion. Our data indicate that, with regard to casein expression, cultivation of mouse mammary epithelia on collagen gels essentially duplicates their behavior in the lactating mouse mammary glands.  相似文献   

3.
An ultrastructural and cytochemical study of normal human mammary epithelial cells cultured from post-weaning breast fluids is described. Cells were examined at the time of plating and at intervals up to 28 days in culture. Three different stages in the morphological differentiation of these cells in vitro were observed: (1) the first stage was the formation of a monolayer of single cells, which occurred between days 1 and 10 in culture. The cells in this stage were not interconnected by junctional complexes and lacked Mg++- dependent ATPase activity in the plasma membranes, but did contain a large quantity of lipid and exhibited some secretory characteristics. (2) The second stage, occurring at 10 to 16 days in culture, was characterized by the formation of junctional complexes, the appearance of Mg++-dependent ATPase in the plasma membrane and a decrease in the number of dense bodies with peroxidase activity. (3) The third stage, occurring at 16 to 28 days in culture, was characterized by the formation of stratified layers of epithelial cells, which were interconnected by a larger number of desmosomes with numerous pleomorphic microfilaments. The Mg++-dependent ATPase activity in the plasma membrane was retained and the dense bodies with peroxidase activity were rarely observed at this stage. During the last seven days were prominent in the cells of the stratified layer. After 28 days in the culture, the cells began to round up and slough off the culture plate.  相似文献   

4.
A rat mammary myoepithelial cell line (Rama 401) grown on plastic produces 5 times more collagen (largely type IV) than a mammary epithelial cell line (Rama 704) grown on the same surface. When the cells are grown on collagen gels, the amount of collagen produced by Rama 704 cells increases 3.3 times, whereas there is no increase in collagen production by Rama 401 cells. Increased production of collagen by Rama 704 cells is due to both an increased rate of synthesis and a decreased rate of degradation. These results indicate that for mammary epithelial cells, unlike myoepithelial cells, the rate of production of collagen can be regulated by the extracellular matrix.  相似文献   

5.
 The localization of the two major isoforms of protein kinase C (PKC), PKCα and PKCγ, present in normal and galactosemic bovine lens epithelial cells in culture, was determined using PKC isoform-specific antisera and visualized with FITC-conjugated secondary antisera. The results indicated that the localization of PKC changed upon exposure to 40 mM galactose after 1day. The subcellular distribution of control cells was cytoplasmic and perinuclear for PKCα, while, in 40 mM galactose-treated cells, PKCα was also localized to nuclei. In contrast, upon exposure to 40 mM galactose the PKCγ of the lens epithelial cells was observed in nucleoli. These results suggest that the subcellular distribution of the PKC isoforms in bovine lens epithelial cells differs and is altered upon exposure to 40 mM galactose. Accepted: 7 January 1998  相似文献   

6.
Rat lens epithelial cells in vitro   总被引:2,自引:0,他引:2  
Summary Lens epithelial cells from rats aged 5 days were grown in long-term cultures. These cells age, differentiate and transform spontaneously. Morphological observations indicate five different stages (A-E). The epithelial character is lost after the first two passages. Elongated cells appearing afterwards are considered as cells that have started differentiation to fiberlike cells. Big flattened cells are considered as senescent cells that have lost their proliferative capacity. Data from population kinetics also reflect these five stages. Chromosome analysis shows that three of the five stages are no longer diploid. Two alternative modes of spontaneous transformation are possible. The proliferative capacity of rat lens epithelial cells is higher than that of rat embryonic fibroblast systems. The investigations were supported by the Deutsche Forschungsgemeinschaft (Biology of Aging, Grants Ri 285/2 and Ri 285/3).  相似文献   

7.
Summary Serially subcultured rat lens epithelial cells grow in different stages, which can be classified according to morphology, chromosome numbers and population kinetics. A lensspecific γ-crystallin appears in the diploid stage, when elongated cell types are observed. One of the β-crystallin bands (pH 5.7) disappears during aging in higher passage numbers of the diploid stage B. A weak band in the β-crystallin region (pH 6.4), which is present in all stages, becomes very intensive in aneuploid cells of stage D, which exhibit a fibroblast-like morphology. The work was supported by Deutsche Forschungsgemeinschaft, Grant Ri 285/3.  相似文献   

8.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

9.
Summary The intracellular pH (pH i ) of tissue-cultured bovine lens epithelial cells was measured in small groups of 6 to 10 cells using the trapped fluorescent dye 2,7-bis-(2-,carboxyethyl)-5 (and 6)carboxyfluorescein (BCECF). When perifused at 35°C with artificial aqueous humour solution (AAH) containing 16 mM HCO 3 - and 5% CO2, pH 7.25, pH i was 7.19±0.02 (sem, n = 95). On removing HCO 3 - and CO2 there was an initial transient alkalinization followed by a fall in pH to a steady value of 6.97±0.03 (sem, n = 54). Addition of 0.25 mM 4,4-diisothiocyanatostilbene2, 2-disulfonic acid (DIDS) to AAH containing HCO 3 - and CO2 led to a rapid and pronounced fall in pH. Exposure to Na+-free AAH again led to a marked fall in pH i , but in this case the addition of DIDS did not produce a further fall. Substitution of the impermeant anion gluconate for Cl in the presence of HCO 3 - led to a rise in pH i , while substitution in the absence of HCO 3 - led to a fall in pH i . The above data indicate a significant role for a sodium-dependent Cl-HCO 3 - exchange mechanism in the regulation of pH i . Addition of 1 mM amiloride to control AAH in both the presence and absence of HCO 3 - led to a marked fall in pH i , indicating that a Na+/H+ exchange mechanism also has a significant role in the regulation of pH i . There is evidence for a lactic acid transport mechanism in bovine lens cells, as addition of lactate to the external medium produced a rapid fall in pH i . Larger changes in pH i were observed in control compared to HCO 3 - -free AAH and in the latter case a pronounced alkalinizing overshoot was obtained on removing external lactate. Tissue-cultured bovine lens cells thus possess at least three membrane transport mechanisms that are involved in pH regulation. The buffering capacity of the lens cells was measured by perturbing pH i with either NH 4 + or procaine. The values obtained were similar in both cases and the intrinsic buffering capacity measured in the absence of external HCO 3 - was 5 mm/pH unit (procaine). However, in the presence of HCO 3 - and CO2 the buffer capacity increases approximately fourfold, indicating that HCO 3 - is the principal intracellular buffer.We acknowledge financial support from the Wellcome Trust and the Humane Research Trust for this project. M.R. Williams was in receipt of a Science & Engineering Research Council studentship.  相似文献   

10.
11.
Lens epithelial cells can be kept in their original differentiated state or brought to dedifferentiation depending on the culture conditions. The different stages of differentiation can be identified using specific markers, namely the activity of steroid metabolizing enzymes, and the synthesis of specific structural lens polypeptides. For this reason lens epithelial cells in tissue culture provide a unique system for the study of the regulation of RNA and protein biosynthesis.Abbreviations dehydroepiandrosterone (DHEA)= 3-hydroxy-5-androsten-17-one - androstenediol (ADIOL)= 5-androstene-3, 17-diol - androstenedione(ADION)= 4-androstene-3, 17-dione  相似文献   

12.
Bovine corneal endothelial cells synthesize in culture predominantly type III collagen, with lesser amounts of types I and V and apparently little if any type IV. This pattern of synthesis is observed in both dividing and post-confluent cultures and irrespective of whether cells are attached to plastic or collagen-coated surface.  相似文献   

13.
1. Radioactivity from [3H]glucosamine is rapidly incorporated into cellular fractions of lens epithelial cells cultured in vitro. The incorporated isotope appears largely in glycoproteins of the cell surface that are exposed to trypsin and are released into a soluble form by proteolysis of intact cells. Glycoproteins are also secreted by cultured cells and can be recovered in the culture fluids. Sodium dodecysulphate-polyacrylamide gell electrophoresis shows that a range of glycoproteins with apparent molecular weights from approximately 14000 to 120000 are present. The relationships of these glycoproteins to collagen and the non-collagenous glycoproteins of lens basement membranes are discussed. 2. A plasma membrane fraction obtained from non-trypsinised lens epithelial cells contains one major glycoprotein of apparent molecular weight 120000. A major non-glycosylated polypeptide of molecular weight about 38000 detectable by Bloemendal et al. (1972) in plasma membranes of differentiated lens fibre cells was not prominent in lens epithelial cell membranes. 3. Examination of lens basement membranes extracted in various ways failed to reveal major glycoproteins of low molecular weight. Higher molecular weight glycoproteins, some of them related to collagen, were present.  相似文献   

14.
Summary Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life >50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life <10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43. This work was supported in part by grants from U. S. Department of Agriculture contract 53-3K06-5-10, Massachusetts Lions Eye Research Fund, Inc., and the Daniel and Florence Guggenheim Foundation. D. A. E. is a recipient of a National Eye Institute postdoctoral fellowship.  相似文献   

15.
Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells   总被引:3,自引:0,他引:3  
The present investigation was undertaken to determine the types and extent of DNA damage resulting from incubation of primary cultures of bovine lens epithelial cells with hydrogen peroxide. Significant numbers of DNA single-strand breaks were detected by alkaline elution after exposure to as little as 25 microM H2O2 for 5 min at 37 degrees C. The extent of single-strand breakage was concentration dependent and linear from 25 to 200 microM H2O2. The observed single-strand breaks appear primarily due to the action of the hydroxyl radical via a Fenton reaction as both an iron chelator, 1,10-phenanthroline and OH. scavengers, including DMSO, KI and glycerol, significantly inhibited the DNA-damaging effect of H2O2. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, further potentiated the DNA-damaging effects of H2O2, presumably by increasing the steady-state concentration of Fe2+. DNA-protein cross-linking was not observed. In addition, significant levels of 5,6-saturated thymine residues or pyrimidine dimers were not detected after modification of the alkaline elution methodology to allow the use of either E. coli endonuclease III or bacteriophage T4 endonuclease V, respectively. No double-strand breaks were detected after incubation of epithelial cell cultures with H2O2 concentrations of up to 400 microM for 10 min and subsequent neutral filter elution. Since, in vivo, the lens epithelium contains populations of both quiescent and dividing cells, the degree of susceptibility to oxidative damage was also studied in actively growing and plateau-phase cultures. Reduced levels of single-strand breakage were observed when plateau-phase cultures were compared to actively growing cells. In contrast, essentially no differences in repair rates were noted at equitoxic doses of H2O2. The above results suggest that lens epithelial cells may be particularly sensitive to oxidative damage and thus are a good model system in which to study the effects of oxidative stress.  相似文献   

16.
"Histone synthesis was compared in epithelial lens cells during exponential growth and in the stationary phase brought by contact inhibition. Double labelling experiments with 3H-lysine and 14C-lysine show a net turnover of histone H1 independent of DNA replication. The nucleosome core histones seem to turn over also, but much more slowly than H1".  相似文献   

17.
Bovine oocytes were matured, fertilized, and cultured (TCM 199 with serum and co-culture) in vitro (IVMFC) with addition, during different phases of the procedure, of antioxidants: superoxide dismutase (SOD) and reduced glutathione (GSH). The addition of SOD (1,500 or 3,000 IU/ml) did not improve proportions of oocytes undergoing cleavage or the development of embryos to morula and blastocyst stages. The cleavage rates were significantly lower than in the control group (CTR 57.5%) when SOD was present during the insemination interval (IVF) or throughout the entire procedure (IVMFC). Thus when the lower concentration was present for IVF and IVMFC, 35.1% and 36.4% of inseminated oocytes cleaved (P < 0.01 compared to CTR) and cleavage results with the higher concentration during IVF and IVMFC were 38.5% and 29.2% (P < 0.025 and P < 0.001 compared to CTR, respectively). Significant improvements in proportions of oocytes undergoing cleavage (84.5% vs. 57.0%, P < 0.001) and morula/blastocyst development (33.3% vs. 13.9%, P < 0.005) were achieved when GSH (1 mM) was added to the culture medium. In a defined medium for culture (mSOF and BSA) the presence of SOD (3,000 IU/ml) was ineffective, but in a defined medium supplemented with GSH (1 mM) at day 6 postinsemination (i.e., when 90% of developing embryos were in 8–16 cell stages), development to the morula and blastocyst stages was supported for 35.5% of cultured oocytes (P < 0.005 compared to 19.2% for CTR). These data suggest that bovine embryos are sensitive to oxidative stress and that medium supplementation with the radical scavenger glutathione can improve embryo development in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Summary Carcinogenesis is a lengthy process which eventually culminates in the transformed phenotype, cancer. However, much remains to be defined about the process of transformation. In vivo models for the study of the carcinogenic process present limitations because it is not possible to detect the premalignant stages in the animals. An in vitro model, on the other hand, facilitates the study of the carcinogenic process because it enables one to dissect out the crucial events required for carcinogenesis to occur. As carcinogenesis is believed to be a multistep process; initiation, promotion, and progression, a multistep, in vitro system has been devised in our laboratory to mimic each of these stages. We have previously shown the formation of “microtumors” in collagen gels, induced by 7,12-dimethylbenz(a)anthracene. In the present study the direct acting water soluble, mammary carcinogen,N-nitroso-N-methylurea (NMU) was used for tumorigenesis of mammary epithelial cells in culture. Mammary epithelial cells from virgin Sprague-Dawley rats were propagated and exposed to single or multiple doses of NMU while growing as a monolayer in glass petri dishes (initiation). Initiated cells were then plated into a collagen gel matrix culture. Prolonged growth in the collagen gels afforded for the progression of the transformed cells into discernable microtumors in the three-dimensional matrix of the collagen. The morphology of these “tumors” was determined by histologic sections of the gels. Fewer, if any, such structures existed in the untreated gels.  相似文献   

19.
Bovine aortic endothelial cells in culture were incubated with endotoxin. The amount of thromboxane A2 synthesized was then determined by a specific radioimmunoassay for thromboxane B2. After a lag of several hours the cells changed their shape and parallel to the change in cell shape release of thromboxane B2 occurred. At 24 h the amount of thromboxane B2 generated in response to endotoxin was 200-fold above baseline. Thromboxane B2 generation could be blocked by aspirin and the specific thromboxane synthetase inhibitor UK 37248. The endotoxin effect was dependent on protein and RNA synthesis as evidenced by the inhibitory action of cycloheximide (1.5 microM) and actinomycin D (2 micron).  相似文献   

20.
Both oxidants and antioxidants have been shown to modulate cell proliferation. We studied the effects of hydrogen peroxide and two antioxidants on the rate of proliferation of lens epithelial cells in culture. Hydrogen peroxide at concentrations higher than 32 microM caused a significant inhibition of proliferation. However, in the concentration range of 0.01-0.5 microM, hydrogen peroxide stimulated the rate of proliferation. The effect of hydrogen peroxide was dependent on the amount of cells in an individual culture well, indicating decomposition of hydrogen peroxide by cellular enzymes. In order to eliminate the possibility of decomposition of the dose of hydrogen peroxide given as a bolus, we induced continual production of hydrogen peroxide by adding glucose oxidase to the incubation medium. We found that hydrogen peroxide, generated by 1-50 microU x ml(-1) of glucose oxidase significantly increased the rate of cell proliferation. This effect was most apparent at the beginning of the exponential phase of cellular growth. Glucose oxidase alone (100-500 microU x ml(-1)) did not produce any effect. The effects of pro-oxidative hydrogen peroxide were compared with the effects of two biologically important antioxidants, alpha-tocopherol and retinol. Both antioxidants completely inhibited proliferation at concentrations of 30 microM and higher. In contrast to retinol, the effect of alpha-tocopherol was dependent on the amount of cells, indicating cellular decomposition of alpha-tocopherol. The results document the possibility of redox regulation of cellular proliferation at physiologically relevant reactant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号